Using a Technology-enhanced Curriculum to Improve the Learning of Important Mathematics for English Language Learners

Overview

- The math challenge
- Supports for ELL students
- The SimCalc approach
- Findings
- Conclusions

Our Challenge

Democratizing access to important mathematics for all students

NCTM Focal Points

Proportionality (7th Grade)Students graph proportional relationships and identify the unit rate as the slope of the related line. Linear Function (8th Grade) ...Students translate among verbal, tabular, graphical, and algebraic representations of [linear] functions.

Rate and Proportionality in High School Science

Phil Vahey CREATE 2008

Focus on Mathematical Discourse

Build on existing competencies and experiences

Focus on communication

Use multiple forms of representation and expression

Negotiate mathematical meanings

(e.g. J. Moschovitch (2007); Kaput and Roschelle, (1998)).

Direct interaction with mathematical objects

- Reduce linguistic load
- Make connections between representations
- Provide access to high-level math

Common objects for discussion

- Gestures can refer to mathematical objects
- Can verbally refer to objects without requiring formal math terms (which is learned after the concepts!)

Provide shared experiences

CREATE October 2008 Convright @ 200

Support for real mathematical discourse in real classes!

<text>

Border

Phil Vahey CREATE 2008

a. What did the van do after traveling for one and a half hours? Here is the first time students see a negative slope in this unit. Elicit meaning: It went backwards; it started back toward Abilene. It went from 100 miles out to 0 miles (start point) over a 1.5 hr segment. Depending on your class, you can calculate the negative slope, talk about velocity vs. speed.

"went back."

b. What happened here? Tell the story of this trip. Encourage creativity, step through the simulation to check correctness.

Experimental Design

Phil Vahey CREATE 2008

Ongoing work

Las Cruces Public Schools, NM

- Working with teachers to create differentiation strategies
- Focus on low-achieving students
- Third largest school district in New Mexico (24K students)
- "Small city" settings

Teacher Cadre

 Professional Development for teacher leaders, primarily in Texas (up to 180 new SimCalc teachers)

Continuing research and partnerships

- Investigating how to improve SimCalc for ELL students
- Please contact us!

CREATE October 2008 Convright @ 2008 (

Phil Vahey CREATE 2008

Points to Remember

Top level: not "see, technology works!"

We studied an integration of dynamic math, curriculum & TPD

Key Points:

Challenge: Democratizing Access to Complex Mathematics

Strategy:

- Representational Use of Technology
- Rich tasks
- Transformation of how we engage students

Findings:

- Gains across multiple experiments (7th, 8th, ...)
- Gains were robust across settings and demographics

ELL students can learn complex math in such environments

Recommendations

- While software alone has sometimes been shown not to make a difference, integrated systems of curriculum, dynamic math software, and TPD can make a difference.
- Dynamic mathematics software can be suitable for both advantaged and disadvantaged student populations.
- Dynamic mathematics software has benefits that may be particularly suitable for ELL students

Thanks!

http://math.sri.com or google "SimCalc"

philip.vahey@sri.com; teresa.lara-meloy@sri.com Principal Investigator: jeremy.roschelle@sri.com

