These materials were produced by CREATE with funding from the U.S Department of Education (ED), Institute of Education Sciences, under Contract No. ED-R305A05056. The opinions expressed herein do not necessarily reflect the positions or policies of ED.

© 2012 Center for Applied Linguistics
Framework for K-12 Science Education: Dimension 3—Life Science

- **Disciplinary Core Idea (LS2.B)—Cycles of Matter and Energy Transfer in Ecosystems:** Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact—primarily for food—within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. For example, when molecules from food react with oxygen captured from the environment, the carbon dioxide and water thus produces are transferred back to the environment, and ultimately so are waste products, such as fecal material. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.

- **Science and Engineering Practices:** Developing and Using Models
- **Crosscutting Concepts:** Energy and Matter

Connections to the Common Core State Standards (ELA)

- **WHST.2:** Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
- **L6:** Acquire and use accurately grade-appropriate general academic and domain-specific words and phrases; gather vocabulary knowledge when considering a word or phrase important to comprehension or expression.

Connection to the Common Core State Standards (Math)

- **5.0A:** Analyze patterns and relationships.

Connections to English Language Development Standards

- **ELD Standard 4:** Language of Science
 - **Reading:** Explain the carbon cycle or the carbon-dioxide oxygen cycle by sketching and labeling it with information from a reading passage.

1 Because the WIDA English language development standards are currently used in 29 states, we reference these standards.

www.cal.org/create
Writing: Explain the ways nature recycles by writing a paragraph based on a video and diagram.
Listening: Record the places in the environment where carbon occurs while watching a video.
Speaking: Describe the carbon cycle to a partner using a word bank of key terms.

Overview of Activities

Focus Activity
- **Student Activity I: Rating and Discussion of Science, Language, and Vocabulary Objectives.** Teacher posts lesson objective poster; students rate their prior knowledge of each objective; brief discussion.

Engagement
- **Student Activity II: Food Webs and Food Chains Lesson Review.** Students answer review questions from previous lesson; teacher displays the answers; students correct responses as necessary.

- **Student Activity III: Pre-teaching of Science Content Words.** Teacher displays PowerPoint slides of science content words one at a time; teacher reads script aloud and elicits responses to teach the following: organic, organic compound, matter, molecule, element, carbon cycle.

- **Student Activity IV: Introduction to Matter.** Teacher reads the sentences about matter; students take notes in Student Chart 1.4.

- **Student Activity V: Elements and Compounds.** Teacher explains the periodic table of elements; teacher introduces elements found in organic compounds; students take notes to fill in questions #1 and #2 in Student Chart 1.5; teacher identifies some organic compounds; students take notes to fill in question #3 in Student Chart 1.5.

- **Student Activity VI: Carbon Cycle Video.** Teacher explains directions in Student Chart 1.6; teacher plays Carbon Cycle video; students complete question #2 in Student Chart 1.6; whole group discussion; students complete questions #3 and #4 in Student Chart 1.6; whole group discussion; teacher explains directions in Student Chart 1.7; students work in pairs to answer questions #1 and #2; teacher displays responses; whole group discussion.

Explanation and Exploration
- **Student Activity VII: Carbon Cycle Game.** Teacher reviews directions and displays the Carbon Cycle game to class; teacher quizzes students on facts and negotiates

www.cal.org/create
game; students answer questions #1 and #2 in Student Chart 1.8; teacher displays responses; whole group discussion.

- **Student Activity VIII: How Does Nature Recycle?** Teacher reviews directions; oral discussion of the question; students complete Student Chart 1.9; several students share out.

Elaboration

- **Student Activity IX: General Academic Word Cards.** Teacher displays PowerPoint slides of general academic words one at a time; teacher reads script aloud and elicits responses to teach the following: analyze.

- **Student Activity X: Interactive Reading.** Teacher discusses text illustrations; one student reads guiding questions; teacher and students participate in shared interactive reading; teacher and students discuss guiding questions; students respond to guiding question by creating and presenting posters.

Evaluation

- **Student Activity XI: Glossary and Key Facts.** Students complete glossary for science content words, answer questions related to key content, and indicate if there is anything else they would like to learn about; whole class review.

Extension/Differentiation

- **Student Activity XII: Nitrogen Cycle Video.** Teacher asks students about nitrogen; teacher reads the guiding question; teacher plays the video; students orally discuss the answer to the guiding question; teacher displays the response; whole group discussion.

- **Student Activity XIII: Nitrogen Cycle.** Teacher displays the diagram and reads the question about the nitrogen cycle; whole group discussion

- **Student Activity XIV Nitrogen Cycle Game.**

- **Student Activity XV: Interactive Activity on the Nitrogen Cycle.**
QuEST Middle School Life Science

The Carbon Cycle

Objectives

- **Science:**
 - Students will be able to identify organic compounds and explain how they are recycled in the carbon cycle.

- **Language:**
 - Students will be able to watch and listen to a video on the carbon cycle and answer questions in writing with a partner.
 - Students will be able to read a passage on the carbon cycle and demonstrate comprehension by drawing and labeling a cycle.

Vocabulary

- Science content: organic, organic compound, matter, molecule, element, carbon cycle
- General academic: analyze

Teacher Management

Estimated time for completion, in minutes: 90

Materials
- For each student pair: access to a computer with internet connection

Teacher Prep

1. Review detailed lesson plan in the Teacher Guide.
2. Pull out the Activity Overview page(s), PowerPoint lesson guides, and student charts and add any necessary notes to them from the detailed lesson plan to help guide the lesson.
3. If necessary, organize activities to fit school schedule.
4. Download PowerPoint slides.
5. Display vocabulary cards on the Word Wall.
6. Group students for partner/small group work.

Safety Considerations:

None.

Vocabulary-Building Strategies

- Explicit interactive presentation of vocabulary cards
- Word Wall
- Glossary work

Background Information for Teacher

www.cal.org/create
Lesson Content

Focus Activity/Warm-Up

Student Activity I (slides 3–8, Lesson Objective poster, Student Charts 1.2 and 1.3)
5 minutes
Activity Overview: Rating and Discussion of Science, Language, and Vocabulary Objectives. Teacher posts lesson objective cards; students rate their prior knowledge of each objective; brief discussion.
- Before students enter the room, display the science objectives.
- Make sure the ratings of the previous class have been erased.
- As they enter the classroom, have students rate their prior knowledge of each objective on a continuum of 1 to 4 (1=none, 4=a lot).
- Have students begin the review questions in Student Chart 1.1 until all students have rated their knowledge of the objectives.
- Review correct responses to review activity (see Activity II below).
- Have students turn to Student Chart 1.2.
- Read the science objectives aloud, one at a time, reporting students’ level of prior knowledge.
- Read the language objectives.
- Have students turn to Student Chart 1.3.
- Read vocabulary words aloud.
- As appropriate, have students use thumbs up/thumbs down to indicate prior knowledge.

Engagement

Student Activity II (slides 5–8, Student Chart 1.1)
5 minutes
Activity Overview: Lesson Review. Students answer review questions from previous lesson; teacher displays the answers; students correct responses as necessary.
- After students have rated their knowledge of the objectives and as they wait for their peers to enter the room, students should begin working on Student Chart 1.1.
- Once all students have displayed their knowledge of the objectives poster and have had 2 minutes to answer the review questions, have students read the review questions and answer them aloud.
- Display responses.
• Have students correct their responses as necessary.

Student Activity III (slides 9–14, Science Content Word Cards)
10 minutes
Activity Overview: Pre-teaching of Science Content Words. Teacher displays PowerPoint slides of science content words one at a time; teacher reads script aloud and elicits responses to teach the following: organic, organic compound, matter, molecule, element, carbon cycle.
 • Have students turn to Lesson 1 glossary words.
 • Read the target words aloud, one at a time.
 • Have students rewrite the target words in English and in Spanish (as appropriate) in their glossaries.
 • Display the slides of the science content words one at a time, reading the text on the right side of each PowerPoint slide aloud and eliciting responses from student pairs.
 • Point to the appropriate parts of the pictures as you read through the notes.
 • Depending on your class, you may want to read (or have a student read) the definitions in Spanish.
 • Tell students they may continue to use the science content word cards on the word wall for reference.
 • Teacher note: To save time you may want to eliminate partner talk and just ask one student to answer the question.

Student Activity IV (slides 15, Student Chart 1.4)
4 minutes
Activity Overview: Introduction to Matter. Teacher reads the sentences about matter; students take notes in Student Chart 1.4.
 • Have students turn to Student Chart 1.4.
 • Read the sentences including the target terms. This is a note-taking activity.
 • Display the key terms about matter and have students fill in question #1 in Student Chart 1.4.

Student Activity V (slides 16 and 17, Student Chart 1.5)
7 minutes
Activity Overview: Elements and Compounds. Teacher explains the periodic table of elements; teacher introduces elements found in organic compounds; students take notes to fill in questions #1 and #2 in Student Chart 1.5; teacher identifies some organic compounds; students take notes to fill in question #3 in Student Chart 1.5.
 • Have students turn to Student Chart 1.5.
 • Explain the periodic table of elements.
 • Use the animated cues to introduce the elements that are often (but not always) found in organic compounds: hydrogen, carbon, oxygen, nitrogen, and phosphorus.
This is a note-taking activity. Have students complete questions #1 and #2 in Student Chart 1.5 by circling the element and writing its name.

- Have students generate organic compounds with your help.
- Have students complete question #3 in Student Chart 1.5 [glucose, carbohydrates, methane, proteins, etc.].

Student Activity VI (slides 18–20, Student Chart 1.6)

8 minutes

Activity Overview: Carbon Cycle Video. Teacher explains directions in Student Chart 1.6; teacher plays Carbon Cycle video; students complete question #2 in Student Chart 1.6; whole group discussion; students complete questions #3 and #4 in Student Chart 1.6; whole group discussion; teacher explains directions in Student Chart 1.7; students work in pairs to answer questions #1 and #2; teacher displays responses; whole group discussion.

- Have students turn to Student Chart 1.6.
- Read directions on Student Chart 1.6.
- Play the Brainpop video, “Carbon Cycle” [2:32].
- Have students complete question #2 in Student Chart 1.6.
- Discuss responses.
- Replay the video as necessary.
- Have students complete questions #3 and #4 in Student Chart 1.6.
- Discuss responses.
- Have students turn to Student Chart 1.7.
- Read directions to questions #1 and #2.
- Have students work in pairs to answer questions #1 and #2.
- Display responses and discuss.
- Have students correct responses as necessary.

Explanation and Exploration

Student Activity VII (slide 21, Student Chart 1.8, access to a computer)

8 minutes

Activity Overview: Carbon Cycle Game. Teacher reviews directions and displays the Carbon Cycle game to class; teacher quizzes students on facts and negotiates game; students answer questions #1 and #2 in Student Chart 1.8; teacher displays responses; whole group discussion.

- Have students turn to Student Chart 1.8.
- Click on the Carbon Cycle Game: http://www.windows2universe.org/earth/climate/carbon_cycle.html
- Negotiate the game as a class, reading each bulletin and quizzing the students on the facts that appear.
- Have students answer questions #1 and #2 in Student Chart 1.8.
CREATE Model Life Science Lesson
Cycles Set: The Carbon Cycle
Teacher Guide

- Display responses to question #1 and discuss.
- Have students correct responses as necessary.
- Have students share their answers to #2 aloud.
- Teacher note: If students have access to computers, they can play in small groups.

Student Activity VIII (slide 22, Student Chart 1.9)
8 minutes
Activity Overview: How Does Nature Recycle? Teacher reviews directions; oral discussion of the question; students complete Student Chart 1.9; several students share out.
- Have students turn to Student Chart 1.9.
- Read directions.
- Ask students to orally describe how nature recycles in the carbon cycle and in this food chain.
- Whole group discussion.
- Have students write their paragraph in Student Chart 1.9.
- Call on several students to share out.

Elaboration

Student Activity IX (slides 23 and 24, General Academic Word Cards)
2 minutes
Activity Overview: General Academic Word Cards. Teacher displays PowerPoint slides of science content words one at a time; teacher reads script aloud and elicits responses to teach the following: analyze.
- Read each general academic vocabulary word to students.
- If you like, have students use thumbs up/thumbs down to indicate prior knowledge.
- Have students turn to the Lesson 1 glossary words.
- Read the target word aloud.
- Have students rewrite the target word in English and in Spanish (as appropriate) in their glossaries.
- Point to the appropriate part of the picture as you read through the notes.
- Depending on your class, you may want to read (or have a student read) the definition in Spanish.
- Ask one student pair to answer the question. [Anticipated responses: To find out how well I understand the subjects, how my behavior in class is, if I need extra help, etc.].
- Tell students they may continue to use the general academic word cards on the word wall for reference.
- Teacher note: To save time you may want to eliminate partner talk and just ask one student to answer the question.
Student Activity X (slides 25–29, Student Charts 1.10–1.12)
12 minutes

- **ACCESS, pgs 117–119**

Activity Overview: Interactive Reading. Teacher discusses text illustrations; one student reads guiding questions; teacher and students participate in shared interactive reading; teacher and students discuss guiding questions; students respond to guiding question; teacher posts correct response; students revise responses as necessary.

- **Preview**
 - Have students turn to Student Chart 1.10.
 - Read the guiding question aloud.
 - Review all illustrations in the text with students using the document camera.

- **Text**
 - Have students turn to Student Chart 1.11.
 - Read text aloud to students as they follow in their Student Chart.
 - Stop and clarify text if necessary.
 - Ask students embedded questions. Elaborate on their responses as necessary.
 - When you get to a figure, stop reading and have students look at the figure as you discuss it.

- **Guiding questions**
 - Have students turn to Student Chart 1.12.
 - Have students complete the chart.
 - Have students display their answers under the document camera.
 - Whole class discussion.

Evaluation

Student Activity XI (slides 30–32, Student Charts 1.13–1.15, Glossary)
8 minutes

Activity Overview: Glossary and Key Facts and Questions for Further Study. Students complete glossary for science content words, answer questions related to key content, and indicate if there is anything else they would like to learn about; whole class review.

- **Glossary work**
 - Have students locate Student Chart 1.13.
 - For each science content word, have students work in pairs to indicate whether the word is a cognate and to fill in the rest of the information required by the glossary.
 - Review glossary entries with class.

- **Key information**
Have students turn to Student Chart 1.14.
- Give students several minutes to complete the questions.
- Display responses and discuss.
- Have students correct responses as necessary.

Questions for further study
- Have students turn to Student Chart 1.15.
- Have students complete Student Chart.
- As time permits, have students share their questions with a partner, with the whole class, or have them write them on a sticky note and put them on a “questions wall” on their way out of class. Students who finish an assessment or who have free time might be assigned to go online to find answers to class questions.

Extension

Student Activity XII (slide 35, Student Chart 1.16)
7 minutes

Activity Overview: Nitrogen Cycle Video.
- Have students turn to Student Chart 1.16.
- Explain to students that there is another well known cycle, called the “nitrogen cycle.”
- Ask students: Is air mostly oxygen or nitrogen? Take class vote.
- Display response.
- Read the guiding question.
- Play the Brainpop video, “Nitrogen Cycle” [1:19].
- Discuss the answer to the guiding question.
- Then display the information that answers the guiding question and review it once more.
- **Teacher note:** There is more nitrogen cycle information available in the Extension section.

Student Activity XIII (slide 36, Student Chart 1.17)
4 minutes

Activity Overview: Nitrogen Cycle Discussion.
- Have students turn to Student Chart 1.17.
- Use this diagram to further explain the nitrogen cycle.
- Ask students the discussion question.
- Whole group discussion (answers will vary widely).

Student Activity XIV: Nitrogen Cycle Game.

www.cal.org/create
Student Activity XV: Interactive Activity on the Nitrogen Cycle.
Cycles Lesson 1: Teacher Preparation

- Erase the ratings from the previous class on the objectives poster.
- Decide how students will access the online Carbon Cycle Game: individually, in pairs, or as a whole class.
Students, as you enter the classroom...
• Go to the poster.
• Read each objective.
• Use a marker to rate your knowledge of each objective on a scale of 1 to 4.
• Begin the review questions.

Pacing: 3 minutes.
[There is no Student Chart for this slide].
• Before students enter the room, display the science objectives.
• Make sure the ratings of the previous class have been erased.
• As they enter the classroom, have students rate their prior knowledge of each objective on a continuum of 1-4 (1=no to 4=a lot).
• Have students complete the review questions in Student Chart 2.1.
1.1: Genetics Review Questions

1. Which of the following is false about energy pyramids?
 a. The producers are on the bottom.
 b. There are more consumers than producers.
 c. The tertiary consumers are above the primary consumers.
 d. They show how many organisms belong in each energy level.

Pacing: 1 minute.
• [Students need to complete Student Chart 4.1 on their own or in pairs before questions are reviewed].
• Have one student read #1 from Student Chart 4.1 and answer it aloud.
• Display response.
• Have students correct student response as necessary.
1. According to the food web above,
 a. salmon consume puffins.
 b. sea lions consume polar bears.
 c. plankton are decomposers
 d. sea lions consume salmon.

Pacing: 2 minutes.

• Have one student read #1 from Student Chart 4.1 and answer it aloud.
• Display response.
• Have students correct student response as necessary.
Choose from the following words to complete the sentences:
consumers, decomposer, heredity, petal, predator-prey relationship, producers, source
3. A __________ is the colorful leaf-like part of the flower.
4. Mushrooms and bacteria are examples of a type of __________.
5. Most __________ use photosynthesis to produce energy.
6. Humans are __________.
7. __________ is the passing of genetic traits from parent to offspring.
8. Frogs eating insects is an example of a __________.
9. Factories can be a __________ of pollution.

• Pacing: 2 minutes.
• Follow the same routine as you did with questions #1-2.
1.2: Science and Language Objectives

- **In science, we will learn:**
 - to identify organic compound and explain how they are recycled in the carbon cycle.
- **To develop our language skills, we will learn:**
 - to watch and listen to a video on the carbon cycle and answer questions in writing with a partner.
 - to read a passage on the carbon cycle and demonstrate comprehension through drawing and labeling a cycle.

Pacing: 1 minute.
- Have students turn to Student Chart 1.2.
- Read the science objectives aloud, one at a time, reporting students’ level of prior knowledge.
- Read the language objectives.
1.3: Vocabulary Objectives

• **Science content vocabulary:**
 – organic
 – organic compound
 – matter
 – molecule
 – element
 – carbon cycle

• **General academic vocabulary:**
 – analyze

Pacing: 1 minute.

• Have students turn to Student Chart 1.3.
• Read vocabulary words aloud.
• If you like, have students use thumbs up/thumbs down to indicate prior knowledge.
• Pacing: <2 minutes.
 • Have students turn to lesson 1 glossary words.
 • Read the target word aloud.
 • Have students rewrite the target word in English and in Spanish (as appropriate) in their glossaries.
 • Read through the notes on the right side of the slide.
 • Point to the appropriate part of the picture as you read through the notes.
 • Depending on your class, you may want to read (or have a student read) the definition in Spanish.
 • Ask one student pair to answer the question. [Anticipated response: the wooden sign comes from a once-living tree; the apple is still living].

www.cal.org/create
• Teacher note: To save time you may want to eliminate partner talk and just ask one student to answer the question.
Look at the picture on top. The wooden table and the food are made up of organic compounds because each contains carbon. Look at the picture of the glucose molecule. It also contains carbon.

An organic compound is a compound that contains the element carbon.

Un compuesto orgánico es un compuesto que contiene el elemento carbono.

Partner talk: Glucose is an organic compound. What are some other atoms in glucose besides carbon?

[Anticipated responses: hydrogen and oxygen].
• Look at the picture. The water, the ice cube, and the glass all have mass and take up space; they are forms of matter.

• Matter is anything that has mass and takes up space. It includes heat, sound, and light.

• El materia es cualquier cosa que tiene masa y ocupa espacio y que está compuesta de diferentes tipos de átomos; incluye el calor, el sonido o la luz.

• Partner talk: Give your partner some clues about one form of matter in your classroom. Let them guess what it is.

• Pacing: <2 minutes.
• Follow the same routine.
• Ask one student to answer the question. [Responses will vary].
Look at the picture. The water, the ice, and the condensation on the glass are all made up of water molecules.

A molecule is a pair or group of atoms held together by one or more chemical bonds.

Una molécula es un par o un grupo de átomos que están unidos por uno o más enlaces químicos.

Partner talk: How many hydrogen atoms are in one molecule of water? How many hydrogen atoms are in three molecules of water?

Pacing: <2 minutes.
Follow the same routine.
Ask one student to answer the question.
[Anticipated response: two; six].
• Look at the picture. It shows the element gold.

• An element is a substance that cannot be split into simpler substances. Each element is made of just one kind of atom.

• Un elemento es material natural o sintético que no puede romperse en materiales más simples. Cada elemento está compuesto de solo un tipo de átomo.

• Partner talk: What is the difference between the element oxygen and the element gold?

Pacing: <2 minutes.

• Follow the same routine.

• Ask one student to answer the question.

[Anticipated response: oxygen is a gas; gold is solid; gold is worth more; there is more oxygen than gold in the world; they have different numbers of protons, neutrons, and electrons].

www.cal.org/create
Look at the picture. The plant produces sugars through photosynthesis. The mouse consumes the sugars from the plant. When the mouse breathes, it produces carbon dioxide, which the plants need for photosynthesis.

The carbon cycle is the movement of carbon between living and nonliving parts of an ecosystem.

El ciclo del carbono es la transferencia de carbono a través de las partes vivas e inertes de un ecosistema.

Partner talk: What could replace the mouse in the carbon cycle?

Pacing: <2 minutes.
Follow the same routine.
Ask one student to answer the question.
[Anticipated responses: another herbivore].
1.4: Introduction to Matter

1. Everything is made of matter. Matter comes from _____living____ and _____nonliving____ organisms. Matter from living organisms is called ______________ compounds. Organic compounds contain the element ______carbon____.

Pacing: 4 minutes.
- Have students turn to Student Chart 1.4.
- Read the sentences including the target terms. **This is a note-taking activity.**
- Display the key terms about matter and have students fill in #1 in Student Chart 1.4.
1.5: Elements and Compounds

1. Circle the elements that are often (but not always) found in organic compounds.

2. The elements in organic compounds are _______________, _______________, _______________, _______________, and _______________.

 - carbon
 - hydrogen
 - nitrogen
 - phosphorus
 - oxygen

• Pacing: 5 minutes.
• Have students turn to Student Chart 1.5.
• Explain the periodic table of elements.
• Use the animated cues to introduce the elements that are often (but not always) found in organic compounds: Hydrogen, Carbon, Oxygen, Nitrogen, and Phosphorus.
• This is a note-taking activity. Have students complete #1-2 in Student Chart 1.5—by circling the element and writing its name.
• Teacher’s note: Each element is introduced one by one: the circles enter first in #1, followed by the name of the element in #2.
1.5: Elements and Compounds (cont.)

3. Can you name any organic compounds?
 – Hint: Think of the equation for photosynthesis:

 ![Chemical equation for photosynthesis]

 • glucose, carbohydrates, and methane.

 ![Chemical formula and structure of methane]

 • Pacing: 3 minutes.
 • Have students generate organic compounds with your help.
 • This is a note-taking activity. Students may not have familiarity with compounds. Display the compounds. Have students complete #3 in Student Chart 1.5 [glucose, carbohydrates, methane, proteins, etc.].
1.6: Carbon Cycle Video

1. Listen to the video.
2. Make a list of all of the parts of an ecosystem where you can find carbon.
 a. __________________________
 b. __________________________
 c. __________________________
 d. __________________________
 e. __________________________
 f. __________________________

• **Pacing: 4 minutes.**
• Have students turn to Student Chart 1.6.
• Read directions on Student Chart 1.6.
• Play the Brainpop video, “Carbon Cycle” [2:32].
• Have students complete #2 in Student Chart 1.6.
• Discuss responses.
1.6 : Carbon Cycle Video (cont.)

3. Use the key terms you need to explain the carbon cycle to your partner: add, soak up, animals, breathe, plants, carbon dioxide, photosynthesis, ocean, atmosphere, die, earth's crust, volcano

4. Write your explanation of the carbon cycle in the boxes below.

• Pacing: 4 minutes.
• Replay the video as necessary.
• Have students complete #3-4 in Student Chart 1.6.
• Discuss responses.
1.7

Student Chart 1.7: The Carbon Cycle
After you have watched the video on the carbon cycle, answer Questions #1 and #2 with a partner.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explain how carbon is important to life on Earth.</td>
<td>Carbon is the building block for all life on Earth. Every living cell and every living thing contains some carbon. Earth's carbon is constantly cycling from one form to another.</td>
</tr>
<tr>
<td>2. Why do you think the level of carbon dioxide in the atmosphere has increased in the past 100 years?</td>
<td>The level of carbon dioxide in the atmosphere has increased in the past one hundred years because of human activities. We create tons of carbon dioxide by burning off fossil fuels and when we cut down trees, they are not able to soak up the carbon dioxide.</td>
</tr>
</tbody>
</table>

Pacing: 4 minutes.
- Have students turn to Student Chart 1.7.
- Read directions to #1-2.
- Have students work in pairs to answer #1-2.
- Display responses and discuss.
- Have students correct responses as necessary.
1.8: Carbon Cycle Game

1. Record the places in the environment where carbon is found:

2. Write a fact about carbon that surprised you.

• Pacing: 8 minutes.
• Have students turn to Student Chart 1.8.
• Click on the Carbon Cycle Game:
 http://www.windows2universe.org/earth/climate/carbon_cycle.html
• Negotiate the game as a class, reading each bulletin and quizzing the students on the facts that appear.
• Have students answer #1-2.
• Display responses to #1 and discuss.
• Have students correct responses as necessary.
• Have students share their answers to #2 aloud.
• Teacher’s note: If you have student access to computers, they can play in small groups.
1.9: How does nature recycle?

• Choose the carbon cycle OR this food chain and write a paragraph about how nature recycles.

Food chain:

Energy Source: Sun
Producer: Grass
Primary Consumer: Cow
Tertiary Consumer: People

• Pacing: 8 minutes.
• Have students turn to Student Chart 1.11.
• Read directions.
• Ask students to orally describe how nature recycles in the carbon cycle and in this food chain.
• Whole group discussion.
• Have students write their paragraph in Student Chart 1.11.
• Call on several students to share out.
General Academic Vocabulary

- This lesson’s general academic vocabulary:
 - analyze

• **Pacing: <1 minute.**
 [There is no Student Chart for this slide].
 • Read each general academic vocabulary word to students.
 • If you like, have student use thumbs up/thumbs down to indicate prior knowledge.
• **Pacing:** 2 minutes.
• Have students turn to lesson 1 glossary words.
• Read the target word aloud.
• Have students rewrite the target word in English and in Spanish (as appropriate) in their glossaries.
• Read through the notes on the right side of this PowerPoint slide.
• Point to the appropriate part of the picture as you read through the notes.
• Depending on your class, you may want to read (or have a student read) the definition in Spanish.
• Ask one student pair to answer the question. [Anticipated response: E.g., to find out how well I
understand the subjects, how my behavior in class is, if I need extra help, etc.].

• Teacher note: To save time you may want to eliminate partner talk and just ask one student to answer the question.
1.10: Interactive Reading—Preview

• Turn to Student Chart 1.10.
• Listen to the guiding question:
 – What are the nutrient cycles?
• As the text is read aloud, read along silently in your Student Chart and be prepared to answer the questions.

• Pacing: <1 minute.
• Have students turn to Student Chart 1.10.
• Read the guiding question aloud.
• Teacher’s note: You may choose to display the ACCESS textbook under the ELMO.
• Pacing: 12 minutes for entire Interactive Reading.
• Have students turn to Student Chart 1.11.
• Read text aloud to students as they follow in their Student Chart.
• Stop and clarify text if necessary.
• Ask students embedded questions. Elaborate on their responses as necessary.
• When you get to a figure, stop reading and have students look at the figure as you discuss it.

Embedded Questions:
• Name one important nonliving thing that makes life possible. [the sun]
• Partner talk: How do nonliving or abiotic parts of an ecosystem, such as soil and air, keep energy moving through the ecosystem? [rocks can act as habitats; dead leaves can be used as food for decomposers; air provides oxygen for organisms; water sustains life; soil is used to grow new plants, etc.]
• What is matter made up of? [tiny atoms]
• **Name some examples of matter.** [it is made up of tiny atoms and includes everything on Earth—humans, desks, pencils, air, etc.]

• **What happens when atoms combine into nutrients?** [they provide energy and help living things survive].

• **Where are nutrients found?** [in air, water, and soil]

• **Describe the movement of nutrients.** [they move from the environment to living things and then back again]
• Follow the same routine.

Embedded Questions:

• Name three important nutrients in earth’s ecosystem [oxygen, carbon, and nitrogen]
• How do oxygen, carbon, and nitrogen move in a cycle? [they move from living things to nonliving things and back again]
• Partner talk: Think of other words that contain the root “cycle.” [bicycle, recycle, cyclical, vicious cycle, etc.]
• What elements or molecules do most living things depend on to stay alive? [oxygen and carbon dioxide]
• Describe the movement of carbon dioxide and oxygen in the ecosystem. [plants take in CO2 and give back oxygen; living things in the oceans take in CO2 from the air and release oxygen].
• What part do humans play in the carbon dioxide-oxygen cycle? [humans take in oxygen and breathe out carbon dioxide].
• Partner talk: Explain how nutrients like carbon dioxide and oxygen never get used up.
• Follow the same routine.

• **Embedded questions:**

 • **Name three things that contain carbon atoms.** [in living things; air, rocks, soil, carbon dioxide].
 • **Where does much carbon come from?** [from carbon dioxide in the air]
 • **Where do plants get carbon?** [from carbon dioxide].
 • **What do plants use carbon for?** [to make glucose].
 • **Where do animals get carbon?** [when they eat plants].
 • **What is released when animals breathe out?** [carbon dioxide]
1.12: Interactive Reading Question

- Have students turn to Student Chart 1.12.
- Read the directions.
- Do the first example together.
- Display the answer.
- Have students complete the rest of the chart.
- Display responses and discuss.
- Teacher’s note: You may tell students to use Student Chart 1.6 for a diagram of the carbon cycle.
1.13: Closing Activity—Glossary Work

- Complete glossary entries for the following science content words:
 - organic
 - organic compound
 - matter
 - molecule
 - carbon cycle
 - analyze

Pacing: 5 minutes.

- Have students locate Student Chart 1.13.
- For each science content word, have students work in pairs to indicate whether the word is a cognate and to fill in the rest of the information required by the glossary.
- Review glossary entries with class.
1.14: Closing Activity—
Key Information

Use these words or phrases to complete the sentences below in Student Chart 1.14: analyze, carbon, ecosystem, matter

- Matter is anything that has mass and takes up space.
- An organic compound is a compound that contains the element carbon.
- The carbon cycle is the movement of carbon between living and non-living parts of an ecosystem.
- A scientist can use the periodic table to analyze the number of atoms in each element.

Pacing: 2 minutes.
- Have students turn to Student Chart 1.14.
- Give students several minutes to complete the questions.
- Display responses and discuss.
- Have students correct responses as necessary.
1.15: Closing Activity—
Question for Further Study

• One question I still have or something I want to learn more about is:

• **Pacing: 1 minute.**
• Have students turn to Student Chart 1.15.
• Have students complete Student Chart 1.15.
• As time permits, have students share their questions with a partner, with the whole class, or have them write them on a sticky note and put them on a “questions wall” on their way out of class. Students who finish an assessment early or who have free time might be assigned to go online to find answers to class questions.
Extension Activity

- Nitrogen Cycle Video
- Nitrogen Cycle Discussion
- Nitrogen Cycle Game
- Interactive Activity on the Nitrogen Cycle

Optional

- Visit: http://www.windows2universe.org/teacher_resources/teach_nitrogen.html. Read the instructions for the Nitrogen cycle game, set it up and have students play the game. Summary: Students play the role of nitrogen atoms traveling through the nitrogen cycle to gain understanding of the varied pathways through the cycle and the relevance of nitrogen to living things.

- Visit http://www.teachersdomain.org/resource/lsps07.sci.life.eco.nitrogen/ for this interactive activity adapted from the University of Alberta illustrates how, through a process called fixation, nitrogen flows from the atmosphere, into the soil, through various organisms, and back to the atmosphere in a continuous cycle.
• **Pacing:** <2 minutes.
• Follow the same routine.
• Ask one student to answer the question.

[Anticipated response: urine and feces; death and decay].

• Look at the picture. It demonstrates many ways that nitrogen is recycled. For example, the nitrogen moves from the grass to the cow (living parts of the ecosystem) to the soil (nonliving part the ecosystem).

• The **nitrogen cycle** is the movement of nitrogen between the living and nonliving parts of an ecosystem.

• El ciclo del *nitrógeno* es la transferencia de nitrógeno entre las partes vivas e inertes de un ecosistema.

• Partner talk: The cow in the field is part of the nitrogen cycle. How does the nitrogen move from the cow into the soil?
1.16: Nitrogen Cycle

- **Nitrogen** is another important element for life on Earth.
 - Is air mostly oxygen or nitrogen?
- **Guiding question:** How is bacteria important in the nitrogen cycle?
 Nitrogen interacts with bacteria in soil. The bacteria combine the nitrogen with hydrogen to form ammonia, a compound that cells can use. Another type of bacteria combines ammonia with oxygen to form a compound that can be absorbed by the roots of plants to make proteins. Another type of bacteria takes the oxygen out of the protein compound, releasing the nitrogen into the atmosphere.

Pacing: 7 minutes.
- Have students turn to Student Chart 1.16.
- Explain to students that there is another well known cycle, called the Nitrogen cycle.
- Ask students: Is air mostly oxygen or nitrogen? Take class vote.
- Display response.
- Read the guiding question.
- Play the Brainpop video “Nitrogen Cycle” [4:19].
- Discuss the answer to the guiding question.
- Then display the information that answers the guiding question and review it once more.
- **Teacher’s Note:** There is more nitrogen cycle information available in the Extension section.
Whole group discussion: What impact do humans have on the nitrogen cycle?

• **Pacing: 4 minutes.**
• Have students turn to Student Chart 1.17.
• Use this diagram to further explain the nitrogen cycle.
• Ask students the discussion question.
• Whole group discussion [Answers will vary widely].
Student Chart 1.1: Food Webs and Food Chains Review
Complete the following questions.

1. Which of the following is false about energy pyramids?
 a. The producers are on the bottom.
 b. There are more consumers than producers.
 c. The tertiary consumers are above the primary consumers.
 d. They show how many organisms belong in each energy level

2. According to the food web above,
 a. salmon consume puffins.
 b. sea lions consume polar bears.
 c. plankton are decomposers.
 d. sea lions consume salmon.

Choose from the following words to complete the sentences:
consumers, decomposer, heredity, petal, predator-prey relationship,
producers, source

3. A ____________ is the colorful leaf-like part of the flower.
4. Mushrooms and bacteria are examples of a type of ________________.
5. Most ________________ use photosynthesis to produce energy.
6. Humans are ____________________.
7. ________________ is the passing of genetic traits from parent to offspring.
8. Frogs eating insects is an example of a ____________________________
9. Factories can be a ________________ of pollution.
In Science we will learn:

– to identify organic compounds and explain how they are recycled in the carbon cycle.

To develop our language skills, we will learn:

– to watch and listen to a video on the carbon cycle and answer questions in writing with a partner.
– to read a passage on the carbon cycle and demonstrate comprehension by drawing and labeling a cycle.

Science content vocabulary:

– organic
– organic compound
– matter
– molecule
– element
– carbon cycle

General academic vocabulary:

– analyze
Student Chart 1.4: Matter
Take notes about organic compounds in item #1.

1. Everything is made of ______________________. Matter comes from _________________ and _________________ things. Matter from living organisms is called _________________ compounds. Organic compounds contain the element _________________.

www.cal.org/create
1. Circle the elements that are often (but not always) found in organic compounds.

2. The elements in organic compounds are ____________________,
______________, ____________________, and ____________________.

3. Name some organic compounds: ______________________________,
___________________________, and ___________________________.

Student Chart 1.5: Elements and Compounds

Identify the elements in organic compounds and list some organic compounds.

Periodic Table of the Elements

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
</tr>
<tr>
<td></td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td></td>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
</tr>
<tr>
<td></td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
</tr>
<tr>
<td></td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
<td>Xe</td>
<td>Cs</td>
</tr>
<tr>
<td></td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
</tr>
<tr>
<td></td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td>Tl</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>Bi</td>
<td>Po</td>
<td>At</td>
<td>Rn</td>
<td>Fr</td>
</tr>
</tbody>
</table>

* Lanthanide Series
* Actinide Series

Chemical Reactions

6CO₂ + 6H₂O → light energy → C₆H₁₂O₆ + 6O₂
Watch the video on the carbon cycle. Then answer questions #2–#4 with a partner.

1. Listen to the video.

2. Make a list of all of the parts of an ecosystem where you could find carbon.
 a. ____________________________
 b. ____________________________
 c. ____________________________
 d. ____________________________
 e. ____________________________
 f. ____________________________

3. Use the key terms you need to explain the carbon cycle to your partner: *add*, *soak up*, *animals*, *breathe*, *plants*, *carbon dioxide*, *photosynthesis*, *ocean*, *atmosphere*, *die*, *Earth’s crust*, *volcano*.

4. Write your explanation of the carbon cycle in the boxes below.
Student Chart 1.7: The Carbon Cycle
After you have watched the video on the carbon cycle, answer questions #1 and #2 with a partner.

1. Explain how carbon is important to life on Earth.

__
__
__
__
__

2. Why do you think the level of carbon dioxide in the atmosphere has increased in the past 100 years?

__
__
__
__
__

www.cal.org/create
Student Chart 1.8: The Carbon Cycle Game

Play the game as a class. Record the information in items #1 and #2.

1. Record the places in the environment where carbon is found:

 a. ___________________________________
 b. ___________________________________
 c. ___________________________________
 d. ___________________________________
 e. ___________________________________
 f. ___________________________________

2. Write a fact about carbon that surprised you:

Student Chart 1.9: How Does Nature Recycle?
Choose the carbon cycle or a food chain and write a paragraph about how nature recycles.

Energy Source: Sun
Producer: Grass
Primary Consumer: Cow
Tertiary Consumer: People

www.cal.org/create
Student Chart 1.10: Interactive Reading—Preview
Read the guiding question.

- What are the nutrient cycles?
ENERGY POWERS AN ECOSYSTEM

Energy makes things move and grow. Ecosystems depend on the Sun for energy. Sunlight, like other nonliving things, makes life in an ecosystem possible. Both living and nonliving parts of an ecosystem keep energy moving through the ecosystem.

Name one important nonliving thing that makes life possible.

Partner talk: How do nonliving, or abiotic, parts of an ecosystem, such as soil and air, keep energy moving through the ecosystem?

Everything on Earth is made of matter, even the things you can’t see or touch, like air. Matter is made up of tiny atoms. Some atoms combine into nutrients, which provide energy and help living things survive and grow.

What is matter made up of?

Name some examples of matter.

What happens when atoms combine into nutrients?

Nutrients are in air, water, and soil. Nutrients move from the environment to living things and then back again.

Where are nutrients found?

Describe the movement of nutrients.
NUTRIENT CYCLES

Earth’s ecosystems include oxygen, carbon, and nitrogen. Each of these nutrients moves in a cycle from living things to nonliving things and back again.

Name three important nutrients in earth’s ecosystem.

How do oxygen, carbon, and nitrogen move in a cycle?

Think of other words that contain the root “cycle.”

The Carbon Dioxide-Oxygen Cycle

To stay alive, living things depend on the movement of oxygen and carbon dioxide in an ecosystem. During the day, plants take in carbon dioxide from the air and give back oxygen. Living things in the oceans take in carbon dioxide from the air and release oxygen.

What elements or molecules do most living things depend on to stay alive?

Describe the movement of carbon dioxide and oxygen in the ecosystem.

Humans and other animals breathe in oxygen and breathe out carbon dioxide. The life-supporting nutrients never get used up because they go back and forth in the carbon dioxide-oxygen cycle.

What part do humans play in the carbon dioxide-oxygen cycle?

Partner talk: Explain how nutrients like carbon dioxide and oxygen never get used up.
The Carbon Cycle

The bodies of all living things contain carbon atoms. The air, rocks, and soil also contain carbon atoms. In ecosystems, carbon gets used over and over again. Much carbon comes from carbon dioxide.

| Name three things that contain carbon atoms. |
| Where does much carbon come from? |
| Where do plants get carbon? |

Plants take in carbon from the carbon dioxide in the air. They use it to make sugars. When animals eat plants, they take in carbon. When animals breathe out, they release carbon dioxide back into the air.

| What do plants use carbon for? |
| Where do animals get carbon? |
| What is released when animals breathe out? |
Student Chart 1.12: Interactive Reading Question

Choose one of the nutrient cycles. Sketch and label it. Then use the diagram to explain it to your partner.

Circle the nutrient cycle that you will sketch, label, and explain:

- Carbon-dioxide oxygen cycle
- Carbon cycle

www.cal.org/create
Student Chart 1.13: Glossary
Complete glossary entries for these science content words:

- organic
- organic compound
- matter
- molecule
- element
- carbon cycle
- analyze

Student Chart 1.14: Key Information
Use these words or phrases to complete the sentences below: affect, analyze, carbon, ecosystem, matter.

- _________________ is anything that has mass and takes up space.
- An organic compound is a compound that contains the element _________________.
- The carbon cycle is the movement of carbon between living and nonliving parts of an _________________.
- Decomposers release _______________ compounds from dead plants and animals.
- A scientist can use the periodic table to _______________ the number of atoms in each element.

Student Chart 1.15: Question for Further Study
Write a sentence about what you still want to learn.

One question I still have or something I want to learn more about is:

__
Student Chart 1.16: The Nitrogen Cycle
Watch the video. Be ready to discuss the guiding question.

• Guiding question: How is bacteria important in the nitrogen cycle?

Student Chart 1.17: The Nitrogen Cycle
Look at the diagram below. Then discuss the question below as a group.

• Whole group discussion: What impact do humans have on the nitrogen cycle?
Framework for K-12 Science Education: Dimension 3—Life Science

- **Disciplinary Core Idea (LS2.B)—Cycles of Matter and Energy Transfer in Ecosystems:** Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact—primarily for food—within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. For example, when molecules from food react with oxygen captured from the environment, the carbon dioxide and water this produces are transferred back to the environment, and ultimately so are waste products, such as fecal material. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.

- **Science and Engineering Practices:** Developing and Using Models, Planning and Carrying Out Investigations, Constructing Explanations and Designing Solutions

- **Crosscutting Concepts:** Energy and Matter

Connections to the Common Core State Standards (ELA)

- **W6.8:** Gather relevant information from multiple print and digital sources, assess the credibility of each source, and quote or paraphrase the data and conclusions of others while avoiding plagiarism and providing basic bibliographic information for sources.
- **WHST.7:** Conduct short research projects to answer a question (including a self generated question), drawing on several sources and generating additional, related focused questions that allow for multiple avenues of exploration.
- **L6:** Acquire and use accurately grade-appropriate general academic and domain-specific words and phrases; gather vocabulary knowledge when considering a word or phrase important to comprehension or expression.

Connection to the Common Core State Standards (Math)

- **MP.4:** Model with mathematics.
- **5.0A:** Analyze patterns and relationships.
Connections to English Language Development Standards\(^1\)

- **ELD Standard 4: Language of Science**
 - **Reading**: Read from a variety of resources about composting to select an independent variable for an investigation on decomposition.
 - **Writing**: Measure the rate of decomposition and record observations in a data table.
 - **Listening**: Decide on an independent variable for investigation by talking to a group.
 - **Speaking**: Discuss your group’s independent variable and hypothesis prior to beginning the investigation.

Overview of Activities

Focus Activity

- **Student Activity I: Rating and Discussion of Science, Language, and Vocabulary Objectives.** Teacher posts lesson objective poster; students rate their prior knowledge of each objective; brief discussion.

Engagement

- **Student Activity II: Lesson 4 Review.** Students answer review questions from previous lesson; teacher displays the answers; students correct responses as necessary.

- **Student Activity III: Pre-teaching of Science Content Words.** Teacher displays PowerPoint slides of science content words one at a time; teacher reads script aloud and elicits responses to teach the following: decay, biomass, compost, independent variable, dependent variable.

Explanation and Exploration

- **Student Activity IV: General Academic Word Cards.** Teacher displays PowerPoint slides of general academic words one at a time; teacher reads script aloud and elicits responses to teach the following: activate, implement.

- **Student Activity V: Interactive Reading.** Teacher discusses text illustrations; one student reads guiding questions; teacher and students participate in shared interactive reading; teacher and students discuss guiding questions; students respond to guiding question by creating and presenting posters.

- **Student Activity VI: Decomposition Investigation Preview and Planning.** Students plan their investigations based on the interactive reading in Student Chart 2.6; teachers preview the overview and steps of the investigation in Student Chart 2.7;

\(^1\) Because the WIDA English language development standards are currently used in 29 states, we reference these standards.

[Link to website: www.cal.org/create]
teacher reviews possible resources for the investigation in Student Chart 2.8 or by distributing the readings; student groups discuss and choose their independent variable and record it in Student Chart 2.8; students record their procedures in Student Chart 2.9; teacher reviews procedures.

- **Student Activity VII: Decomposition Investigation Set-Up.** Students identify the materials they will need in Student Chart 2.10 and collect them; students set up the experiment and record their variables and hypotheses in Student Chart 2.11; students record data in the first column in Student Chart 2.12.

Elaboration

- **Student Activity VIII: Decomposition Investigation Data Observation.** Students continue to observe and measure the newspaper every 2 weeks; full class debriefing is in Lesson 11.

Evaluation

- **Student Activity IX: Glossary and Key Facts.** Students complete glossary for science content words, answer questions related to key content, and indicate if there is anything else they would like to learn about; whole class review.

Extension/Differentiation

- **Student Activity X: Nominalization Worksheet.**
QuEST Middle School Life Science
Decomposition

Objectives
- Science:
 - Students will be able to analyze the process of decomposition.
 - Students will be able to plan an experiment involving decomposition.
- Language:
 - Students will be able to orally share information they learn about composting with their groups.
 - Students will be able to draw conclusions from a reading about composting for planning their investigations.

Vocabulary
- Science content: decay, biomass, compost, independent variable, dependent variable
- General academic: activate, implement

Teacher Management
Estimated time for completion, in minutes: 90 (follow up on the decomposition lab occurs in Lesson 11)

Materials
For each student pair:
- 2 clear plastic cups (at least 12 oz)
- Soil (enough to fill each cup to top)
- Newspaper
- Scissors
- Overhead transparency with grid printed on it
- Water

Teacher Prep
1. Review detailed lesson plan in the Teacher Guide.
2. Pull out the Activity Overview page(s), PowerPoint lesson guides, and student charts and add any necessary notes to them from the detailed lesson plan to help guide the lesson.
3. If necessary, organize activities to fit school schedule.
4. Download PowerPoint slides.
5. Display vocabulary cards on the word wall.
6. Group students for partner/small group work.
7. Prepare the newspaper circles and prep stations for students to retrieve supplies.

www.cal.org/create
8. Decide what additional materials you want to make available for students during the lab. Teacher note: If students decide to use worms or other live material, follow all safety rules and provide an enclosed space so they do not escape (e.g., Ziploc bag).

9. Decide which resources you want the students to have available for research and prepare the centers.

Safety Considerations:
None.

Vocabulary-Building Strategies
- Explicit interactive presentation of vocabulary cards
- Word wall
- Glossary work

Background Information for Teacher
- See the background research in Student Chart 2.8.

Lesson Content

Focus Activity/Warm-Up

Student Activity I (slides 3–8, Lesson Objective poster, Student Charts 2.1–2.3)

5 minutes

Activity Overview: Rating and Discussion of Science, Language, and Vocabulary Objectives. Teacher posts lesson objective cards; students rate their prior knowledge of each objective; brief discussion.

- Before students enter the room, display the science objectives.
- Make sure the ratings of the previous class have been erased.
- As they enter the classroom, have students rate their prior knowledge of each objective on a continuum of 1 to 4 (1=none, 4=a lot).
- Have students begin the review questions in Student Chart 2.1 until all students have rated their knowledge of the objectives.
- Review correct responses to review activity (see Activity II below).
- Have students turn to Student Chart 2.2.
- Read the science objectives aloud, one at a time, reporting students’ level of prior knowledge.
- Read the language objectives.
- Have students turn to Student Chart 2.3.
- Read vocabulary words aloud.
- As appropriate, have students use thumbs up/thumbs down to indicate prior knowledge.
Engagement

Student Activity II (slides 4–6, Student Chart 2.1)
6 minutes

Activity Overview: Carbon Cycle Lesson Review. Students answer review questions from previous lesson; teacher displays the answers; students correct responses as necessary.

- After students have rated their knowledge of the objectives and as they wait for their peers to enter the room, students should begin working on Student Chart 2.1.
- Once all students have displayed their knowledge of the objectives poster and have had 2 minutes to answer the review questions, have students read the review questions and answer them aloud.
- Display responses.
- Have students correct their responses as necessary.

Student Activity III (slides 9–13, Science Content Word Cards)
10 minutes

Activity Overview: Pre-teaching of Science Content Words. Teacher displays PowerPoint slides of science content words one at a time; teacher reads script aloud and elicits responses to teach the following: decay, biomass, compost, independent variable, dependent variable.

- Have students turn to Lesson 2 glossary words.
- Read the target words aloud, one at a time.
- Have students rewrite the target words in English and in Spanish (as appropriate) in their glossaries.
- Display the slides of the science content words one at a time, reading the text on the right side of each PowerPoint slide aloud and eliciting responses from student pairs.
- Point to the appropriate parts of the pictures as you read through the notes.
- Depending on your class, you may want to read (or have a student read) the definitions in Spanish.
- Tell students they may continue to use the science content word cards on the word wall for reference.
- Teacher note: To save time you may want to eliminate partner talk and just ask one student to answer the question.
Explanation and Exploration

Student Activity IV (slides 14 and 15, General Academic Word Cards)
4 minutes

Activity Overview: General Academic Word Cards. Teacher displays PowerPoint slides of science content words one at a time; teacher reads script aloud and elicits responses to teach the following: activate, implement.

- Read each general academic vocabulary word to students.
- If you like, have student use thumbs up/thumbs down to indicate prior knowledge.
- Have students turn to Lesson 2 glossary words.
- Read the target words aloud.
- Have students rewrite the target words in English and in Spanish (as appropriate) in their glossaries.
- Read through the notes on the right side of each slide.
- Point to the appropriate part of the picture as you read through the notes.
- Depending on your class, you may want to read (or have a student read) the definition in Spanish.
- Display the slides of the general academic words one at a time, reading the script aloud and eliciting responses.
- Tell students they may continue to use the general academic word cards on the word wall for reference.
- **Teacher note:** To save time you may want to eliminate partner talk and just ask one student to answer the question.

Student Activity V (slides 16–20, Student Charts 2.4–2.6)
12 minutes

Activity Overview: Interactive Reading. Teacher discusses text illustrations; one student reads guiding question; teacher and students participate in shared interactive reading; teacher and students discuss guiding questions; students respond to guiding question; teacher posts correct response; students revise responses as necessary.

- **Preview**
 - Have students turn to Student Chart 2.4.
 - Read the guiding question aloud.
 - Introduce the term “landfill” using slide #16.

- **Text**
 - Have students turn to Student Chart 2.5.
 - Read text aloud to students as they follow in their Student Chart.
 - Stop and clarify text if necessary.
 - Ask students embedded questions. Elaborate on their responses as necessary.
When you get to a figure, stop reading and have students look at the figure as you discuss it.

Guiding questions
- Have students turn to Student Chart 2.6.
- Have students complete the chart.
- Have students display their answers under the document reader.
- Whole class discussion.

Student Activity VI (slides 21–23, Student Charts 2.7–2.9)

25 minutes

Activity Overview: Decomposition Investigation Preview and Planning.

- **Preview**
 - Have students turn to Student Chart 2.7.
 - Read the Investigation Overview and the Steps of Investigation.

- **Background research**
 - Have students turn to Student Chart 2.8.
 - Review the resources in Student Chart 2.8. Discuss the origin of the resources and why you chose to include them. Tell students they will be using the resources on this page to research decomposition and select their independent variable.
 - Be sure to highlight the proper way to cite their bibliographic sources and model note-taking to avoid plagiarism (see Appendix, page 12).
 - **Teacher note:** You may wish to give students the printed readings, to watch the video clips as a class, or to have students do this as independent work. You may distribute highlighters for students to highlight from the printed readings.

- **Procedure**
 - Have students turn to Student Chart 2.9.
 - Have students write down their procedure they will use.
 - Remind students to use the procedure in Student Chart 2.7.
 - Ask one student pair to read their procedure aloud.
 - With all of the supplies laid out, follow their directions verbatim, without any inference on your part.
 - Point out the importance of having a clear procedure that can be followed by any other scientist.
 - Give students time to edit their work.
 - If time allows, have students read their procedure to a partner as part of the editing process.
 - Circulate around the class to review each group’s procedure.
 - When students have a procedure that is acceptable, allow the groups to begin setting up their experiment.

Student Activity VII (slides 24–26, Student Charts 2.10–2.12)

20 minutes
Activity Overview: Decomposition Investigation.

- **Materials**
 - Have students turn to Student Chart 2.10.
 - Once students have done their background research, have students fill in their independent variable in Student Chart 2.10.
 - Have students check off the materials they will need.
 - Distribute materials or have students collect them.

- **Experiment**
 - Have students turn to Student Chart 2.11.
 - Have student complete the experiment in pairs and record their hypothesis and variables in Student Chart 2.11.
 - Have students begin the investigation, recording the amounts of soil, newspaper and water in Student Chart 2.11.

- **Data table**
 - Have students turn to Student Chart 2.12.
 - Show students where they will fill in the data they observe.
 - Plan to collect data once every 2 weeks over the duration of the experiment.

Elaboration

Student Activity VIII (Student Chart 2.12)
Ongoing; every 2 weeks

Activity Overview: Decomposition Investigation Data Observation.

- Plan to collect data once every 2 weeks over the duration of the experiment.
- Every 2 weeks give students time to measure the newspaper with the transparency grid and record their measurements in Student Chart 2.12.
- **Teacher note:** If students have access to digital cameras, you may consider having them take a picture at specific intervals as a form of observation.
- **Teacher note:** The data analysis and conclusion for this activity continue in a later lesson (Lesson 11 is not included here, but see student charts corresponding to this activity in the Appendix, page 11).
Evaluation

Student Activity IX (slides 27–29, Student Charts 2.13–2.15, Glossary)

8 minutes

Activity Overview: Glossary and Key Facts and Questions for Further Study. Students complete glossary for science content words, answer questions related to key content, and indicate if there is anything else they would like to learn about; whole class review.

- **Glossary work**
 - Have students locate Student Chart 2.13.
 - For each science content word, have students work in pairs to indicate whether the word is a cognate and to fill in the rest of the information required by the glossary.
 - Review glossary entries with class.

- **Key information**
 - Have students turn to Student Chart 2.14.
 - Give students several minutes to complete the questions.
 - Display responses and discuss.
 - Have students correct responses as necessary.

- **Questions for further study**
 - Have students turn to Student Chart 2.15.
 - Have students complete Student Chart.
 - As time permits, have students share their questions with a partner, with the whole class, or have them write them on a sticky note and put them on a “questions wall” on their way out of class. Students who finish an assessment or who have free time might be assigned to go online to find answers to class questions.

Extension/Differentiation

- **Student Activity X: Nominalization Worksheet.**
- **Student Activity XI: Decomposition Revisited (see Appendix)**
Appendix: Decomposition Revisited

The following charts are the follow-up activity for the decomposition investigation in Cycles Lesson 2. This lesson is not included here in its entirety, but the charts for this activity are below.

Student Chart 11.4: Analysis

Discuss your results from Student Chart 2.12. Then answer questions #1–#4.

1. Which mixture made the paper decompose the fastest, cup #1 or cup #2?

2. Why do you think that mixture worked so well?

3. What would you add next time?

4. What did you learn from this experiment?
Student Chart 11.5: Comparing Class Results

Use this chart to determine which pair(s) got the most significant results.

<table>
<thead>
<tr>
<th>Pair #</th>
<th>What was added to the soil?</th>
<th>Squares at the end of the experiment/Squares at the beginning of the experiment = % of paper that decomposed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Which pair(s) had the most decomposition of the newspaper?

__

__

2. What might that tell us about the conditions necessary for decomposition?

__

__
Student Chart 11.6: Conclusion

Use your notes from Lesson 2 to fill in the information to complete the lab report.

The purpose of a conclusion is to tell the reader what happened in the experiment, explain why you think that it happened, and to give suggestions for what to do in future experiments.

Step 1: Explain what happened.
1. In this experiment I was trying to

__
__
__

2. My hypothesis was that

__
__

(Circle one)

3. My hypothesis was [supported] or [not supported] by this experiment.

4. Here are the results of my experiment:
 • In cup one, the number of squares missing on the grid was ________.
 • In cup two, the number of squares missing on the grid was ________.

5. The soil mixture with the independent variable of ________________ added made the paper decompose the most.
Student Chart 11.7: Conclusion (cont.)
Use your notes from lesson 5 to fill in the information to complete the lab report.

Step 2: Explain why it happened.
__
__
__

Step 3: Explain what went wrong or what could have been done better in your experiment.
1. Some mistakes that were made in this experiment were
__
__
__

2. Other problems that happened in the experiment were
__
__
__
__

3. Next time I do the experiment I will
__
__
__

Step 4: Explain why your experiment is important.
The results of this experiment will be helpful to our town or city because
__
__
__
__
Student Chart 11.8: References

Return to Student Chart 2.8 for a list of recommended resources for this investigation.

List the references that your group used.

Lesson 2: Decomposition
Ecology Lesson 2: Teacher Preparation

• Erase the ratings from the previous class on the objectives poster.

• Composting lab:
 – Decide what additional materials you want to make available for students during the lab.
 – Note: If students decide to use worms or other live materials, follow all safety rules and provide an enclosed space (Ziploc bag, etc.)
 – Decide if students will do independent research or if you will distribute readings/resources.
Students, as you enter the classroom...
• Go to the poster.
• Read each objective.
• Use a marker to rate your knowledge of each objective on a scale of 1 to 4.
• Begin the review questions.

Pacing: 3 minutes.
[There is no Student Chart for this slide].
• Before students enter the room, display the science objectives.
• Make sure the ratings of the previous class have been erased.
• As they enter the classroom, have students rate their prior knowledge of each objective on a continuum of 1-4 (1=no to 4=a lot).
• Have students complete the review questions in Student Chart 2.1.
2.1: Genetics Review Questions

1. Look at the diagram. Then choose a title.
 a. Nitrogen Cycle
 b. Water Cycle
 c. Carbon dioxide-oxygen cycle
 d. Carbon cycle

Pacing: 2 minutes.
[Students need to complete Student Chart 2.1 on their own or in pairs before questions are reviewed].
• Have one student read #1 from Student Chart 2.1 and answer it aloud.
• Display response.
• Have students correct student response as necessary.
2. Which of these is an organic molecule?
 a. O₂
 b. H₂O
 c. C₆H₁₂O₆ glucose
 d. N₂

Why is it organic? because glucose contains carbon and hydrogen.

Pacing: 2 minutes.
• Have one student read #2 from Student Chart 2.1 and answer it aloud.
• Display response.
• Have students correct student response as necessary.
2.1: Genetics Review Questions (cont.)

Choose from the following words to complete the sentences: analyze, carbon, elements, nutrients, organic

3. An animal gives off CO\textsubscript{2} when it breathes; the plant uses the CO\textsubscript{2} for photosynthesis. This is an example of the __________ cycle.

4. Nitrogen, carbon, and oxygen are examples of ________________ that get recycled in an environment.

5. The doctors will ________________ the x-ray for broken bones.

6. A(n) ________________ compound must contain carbon.

7. Silver, gold, hydrogen, and nitrogen are all examples of ________________.

Pacing: 2 minutes.

Follow the same routine as you did with questions #1-2.
2.2: Science and Language Objectives

• In science, we will learn:
 – to analyze the process of decomposition.
 – to plan an experiment involving decomposition.
• To develop our language skills, we will learn:
 – to orally share information you learn about composting with your group.
 – to draw conclusions from reading about composting for your investigation.

Pacing: 1 minute.
• Have students turn to Student Chart 2.2.
• Read the science objectives aloud, one at a time, reporting students’ level of prior knowledge.
• Read the language objectives.
2.3: Vocabulary Objectives

- **Science content vocabulary:**
 - decay
 - biomass
 - compost
 - independent variable
 - dependent variable

- **General academic vocabulary:**
 - activate
 - implement

Pacing: 1 minute.
- Have students turn to Student Chart 2.3.
- Read vocabulary words aloud.
- If you like, have students use thumbs up/thumbs down to indicate prior knowledge.
• **Pacing:** 2 minutes.
• Have students turn to lesson 5 glossary words.
• Read the target word aloud.
• Have students rewrite the target word in English and in Spanish (as appropriate) in their glossaries.
• Read through the notes on the right side of this Powerpoint slide.
• Point to the appropriate part of the picture as you read through the notes.
• Depending on your class, you may want to read (or have a student read) the definition in Spanish.
• Ask one student to answer the question. [Responses will vary].
Teacher note: To save time you may want to eliminate partner talk and just ask one student to answer the question.
• Look at the picture. The girl, the plant, the insects, the compost, the wood chips, and the bacteria in the soil all make up the biomass of the garden.

• Biomass is the total mass of living organisms in a certain area. It can also be matter formed by plants or animals that is used as a fuel, such as wood or dung.

• Biomasa es la masa total de los organismos vivos en un área específica. También se refiere a la materia formada por plantas y animales que es usada como combustible, como lo son la madera o el estiércol.

• Partner talk: In an energy pyramid, which type of organism has the most biomass?

Pacing: 2 minutes.

• Follow the same routine.

• Ask one student to answer the question. [Anticipated response: producers].
• Look at the picture. The person is churning the mixture of dead leaves, grass, and food scraps that make up his compost pile.

• Compost is a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil.

• El abono es una mezcla de hojas, vegetales o estiércol que se encuentran en proceso de descomposición. Se usa para mejorar la calidad del suelo del jardín.

• Partner talk: Name some foods that you could put into a compost pile.

• Pacing: 2 minutes.
• Follow the same routine.
• Ask one student to answer the question. [Responses will vary].
Look at the picture. In this experiment about what happens to the temperature of water when you heat it over time, the water temperature is the dependent variable. This is because the water temperature is what we are testing; the temperature of the water is dependent on the amount of time that the pot is on the stove.

A dependent variable is the what you are testing in an experiment.

La variable dependiente es lo que se pone a prueba en un experimento.

Partner talk: Name the dependent variable in one of your most recent class experiments.

Pacing: 2 minutes.

Follow the same routine.

Ask one student to answer the question. [Responses will vary].
Look at the picture. This is a science experiment about what happens to the temperature of water when you heat it over time. The independent variable is time because you control how much time the water is heating.

An independent variable affects the value of the dependent variable; in an experiment, you control the value of the independent variable.

La variable independiente afecta el valor de la variable dependiente; en un experimento, tú controles el valor de la variable independiente.

Partner talk: Name the independent variable in one of your most recent classroom experiments.

Pacing: 2 minutes.
Follow the same routine
Ask one student to answer the question. [Responses will vary].

www.cal.org/create
activate

Look at the picture. The man activates the boat's motor by pulling on the rope.

To activate is to make something start working.

Activar es hacer que algo comience a funcionar.

What are some reasons why a pilot might need to activate an ejector seat and jump out of plane?

Pacing: 2 minutes.

- Have students turn to lesson 2 glossary words.
- Read the target word aloud.
- Have students rewrite the target word in English and in Spanish (as appropriate) in their glossaries.
- Read through the notes on the right side of the slide.
- Point to the appropriate part of the picture as you read through the notes.
- Depending on your class, you may want to read (or have a student read) the definition in Spanish.
- Ask one student to answer the question. [Responses will vary].
• **Pacing:** 2 minutes.
 • Have students turn to lesson 2 glossary words.
 • Read the target word aloud.
 • Have students rewrite the target word in English and in Spanish (as appropriate) in their glossaries.
 • Read through the notes on the right side of the slide.
 • Point to the appropriate part of the picture as you read through the notes.
 • Depending on your class, you may want to read (or have a student read) the definition in Spanish.
 • Ask one student to answer the question. [Anticipated response: goggles, lab coat, standing far away, etc.]
Help Reduce Trash County’s Landfill by Activating Project Decomposition

Pacing: 2 minutes.
[There is no Student Chart for this slide].
• Ask students what a landfill is. Tell students that they will be involved in an investigation to reduce the amount of landfill in Trash County. This slide introduces the Interactive Shared Reading.
2.4: Interactive Reading—Preview

• Turn to Student Chart 2.4.
• Listen to the guiding question:
 – Can we use decomposition to make fertilizer and to reduce the amount of landfill?
• As the text is read aloud, read along silently in your Student Chart and be prepared to answer the questions.

• Pacing: <1 minute.
• Have students turn to Student Chart 2.4.
• Read the guiding question aloud.
Pacing for Interactive Reading: 12 minutes.
Have students turn to Student Chart 2.5.
Read text aloud to students as they follow in their Student Chart.
Stop and clarify text if necessary.
Ask students embedded questions. Elaborate on their responses as necessary.

Embedded Questions:

- **Currently, what happens to garbage at the landfill?** [garbage is buried]
- **Why is this a problem?** [the garbage does not decompose]
- **Why does Trash County want to change their garbage disposal system?** [because they are running out of room for their garbage]
• Why can’t some newspapers be recycled? [because they are put in the garbage and contaminated by other garbage]
Read text aloud to students as they follow in their Student Chart.

Stop and clarify text if necessary.

Ask students embedded questions. Elaborate on their responses as necessary.

Embedded Questions:

- **What does the county want to do with the papers?** [compost the papers and sell the compost for fertilizer]
- **What is the name of the process where materials are broken down into simpler substances?** [decomposition]
- **Why is it possible to recycle newspaper?** [because it is an organic compound and so some of the...
biomass can return to the soil and become good fertilizer]
• Pair students.
• Have students turn to Student Chart 2.6.
• Have student answer #1-2.
• Whole class discussion.
• **Pacing:** 3 minutes.
• Have students turn to Student Chart 2.7.
• Read the Investigation Overview and the Steps of Investigation.
• **Pacing:** 15 minutes
• Have students turn to Student Chart 2.8.
• Review the resources in Student Chart 2.8. Tell students they will be using the resources on this page to research decomposition and select their independent variable.
• **Teacher’s note:** You may wish to give students the printed readings or to watch the video clips as a class or to have students do this as independent work. You may distribute highlighters for students to highlight from the printed readings.
• **Pacing:** 7 minutes.
 • Have students turn to Student Chart 2.9.
 • Have students write down their procedure they will use.
 • Remind students to use the Steps of the Investigation in Student Chart 2.7.
 • Circulate around the class to review each group’s procedure.
 • When students have a procedure that is acceptable, allow the groups to begin setting up their experiment.

Optional:
• Ask one student pair to read their procedure aloud.
• With all of the supplies laid out, follow their directions verbatim, without any inference on your part.
• Point out the importance of having a clear procedure that can be followed by any other scientist.
• Give students time to edit their work.
• If time allows, have students read their procedure to a partner as part of the editing process.
• **Pacing:** 3 minutes.
• Have students turn to Student Chart 2.10.
• Once students have done their background research, have students fill in their independent variable in Student Chart 2.10.
• Have students check off the materials they will need.
• Distribute materials or have students collect them.
- **Pacing:** 15 minutes.
- Have students turn to Student Chart 2.11.
- Have students complete the experiment in pairs and record their hypothesis and variables in Student Chart 2.11.
- Have students begin the investigation, recording the amounts of soil, newspaper and water in Student Chart 2.11.
• **Pacing:** 2 minutes
• Have students turn to Student Chart 2.12.
• Show students where they will fill in the data they observe.
• Plan to collect data once every 2 weeks over the duration of the experiment.
• Every 2 weeks give students time to measure the newspaper with the transparency grid and record their measurements in Student Chart 2.12.
• **Teacher’s note:** If students have access to digital cameras, you may consider having them take a picture at specific intervals as any form of observation.
• **Teacher’s note:** The data analysis and conclusion for this activity continue in a later lesson (Lesson 11—see Appendix of the Teacher Guide).
2.13: Closing Activity—Glossary Work

• Complete glossary entries for the following science content words:
 – decay
 – biomass
 – compost
 – independent variable
 – dependent variable
 – activate
 – implement

• Pacing: 5 minutes.
• Have students locate Student Chart 2.13.
• For each science content word, have students work in pairs to indicate whether the word is a cognate and to fill in the rest of the information required by the glossary.
• Review glossary entries with class.
2.14: Closing Activity—Key Information

- Use these words or phrases to complete the sentences below in Student Chart 5.14: activate, biomass, decay, dependent, implemented, independent

- We _____implemented_____ our lab procedure by ____________________________.

- The _____independent_____ variable that we chose to speed the process of decomposition is ____________________________.

- The _____dependent_____ variable in our investigation is ____________.

- The goal of the investigation is to find out the fastest way to _____activate_____ decomposition.

- Over time the compost pile will _____decay_____.

- _____Biomass_____ is the total mass of organisms living in a certain area.

• Pacing: 2 minutes.
• Have students turn to Student Chart 2.14.
• Give students several minutes to complete the questions.
• Display responses and discuss.
• Have students correct responses as necessary.
• Teacher note: The end of the first sentence is intentionally left blank for students to fill in the steps of their own procedures.
5.15: Closing Activity—Question for Further Study

• One question I still have or something I want to learn more about is:

__
__

• **Pacing:** 1 minute.
 • Have students turn to Student Chart 2.15.
 • Have students complete Student Chart 2.15.
 • As time permits, have students share their questions with a partner, with the whole class, or have them write their questions on a sticky note and put them on a “questions wall” on their way out of class. Students who finish an assessment early or who have free time might be assigned to go online to find answers to class questions.
Extension Activity

- Nominalization worksheet
 - verbs → nouns by adding the ending -ion
 - decompose → decomposition

Optional
• Access the Sharepoint for a worksheet on nominalization.
These materials were produced by CREATE with funding from the U.S Department of Education (ED), Institute of Education Sciences, under Contract No. ED-R305A05056. The opinions expressed herein do not necessarily reflect the positions or policies of ED.

© 2012 Center for Applied Linguistics

www.cal.org/create
1. Look at the diagram below. Then choose a title.

- a. Nitrogen Cycle
- b. Water Cycle
- c. Carbon Dioxide-Oxygen Cycle
- d. Carbon Cycle

2. Which of these is an organic molecule?
 - a. O₂
 - b. H₂O
 - c. C₆H₁₂O₆
 - d. N₂

Choose from the following words to complete the sentences:
- analyze, carbon, elements, nutrients, organic

3. An animal gives off CO₂ when it breathes; the plant uses the CO₂ for photosynthesis. This is an example of the ____________ cycle.
4. Nitrogen, carbon, and oxygen are examples of ____________ that get recycled in an environment.
5. The doctors will ____________ the x-ray for broken bones.
6. A(n) ____________ compound must contain carbon.
7. Silver, gold, hydrogen, and nitrogen are all examples of ____________.
Student Chart 2.2: Science and Language Objectives
Listen and follow along as your teacher reads this lesson’s objectives.

In Science we will learn:

– to analyze the process of decomposition.
– to plan an experiment involving decomposition.

To develop our language skills, we will learn:

– to orally share information you learn about composting with your group.
– to draw conclusions from a reading about composting for planning your investigation.

Student Chart 2.3: Vocabulary Objectives
Listen and follow along as your teacher reads this lesson’s vocabulary.

Science content vocabulary:

– decay
– biomass
– compost
– independent variable
– dependent variable

General academic vocabulary:

– activate
– implement
Student Chart 2.4: Interactive Reading—Preview

Read the guiding question.

- Can we use decomposition to make fertilizer and to end the use of a landfill?
Trash County wants to change their trash disposal system. Trash County, like many counties across the United States, has a local landfill they use for their garbage. At the landfill, garbage is buried. However, the garbage does not decompose. Newspapers that are still readable have been unearthed from landfills dating back twenty years.

Currently, what happens to garbage at the landfill?

Why is this a problem?

Trash County wants to change their garbage disposal system because their landfill is almost full and there is no other location in the county to bury their garbage. Many other counties are facing the same problem.

Why does Trash County want to change their garbage disposal system?

The county government has decided to introduce the process of decomposition into the landfill system. Some newspapers can be recycled, but many are still sent to the landfill, and once they are contaminated or polluted with other garbage, the newspapers cannot be recycled.

Why can’t some newspapers be recycled?
The county would like to know if it is possible to compost the papers and then sell the compost for fertilizer. Therefore, the county government wants to develop the best conditions for the newspapers to decompose the fastest. **Decomposition** is the process where materials are broken down into simpler substances.

What does the county want to do with the papers?

What is the name of the process where materials are broken down into simpler substances?

Since paper is an organic compound, we can return some of the **biomass** to the soil and make good fertilizer; then we can reduce the space needed in the landfill. Your group has been selected to determine the best conditions for newspaper decomposition. You will select one **variable** for your experiment, compare your results with the other scientists, and present your findings to the county government. Maybe they will implement your solution!

Why is it possible to recycle newspaper?
Student Chart 2.6: Decomposition

Work with partner to answer questions #1 and #2.

1. What is decomposition?

__

__

2. Based on the Interactive Reading, what is the question that you need to answer in this investigation?

__

__

www.cal.org/create
Student Chart 2.7: Decomposition Investigation—Preview

Listen to the instructions.

Investigation Overview

- In this lab each group will be investigating how to speed up the process of decomposition.

- You will do the following:
 1. Background research to decide on the independent variables to use in your experiment.
 2. An experiment to see how your independent variables influence the dependent variable, decomposition.

Steps of Investigation

- There are two cups. One is a control cup. The other is an experimental cup.
- You will add the same amount of soil, water, and newspaper to each cup.
- Your group will decide what independent variables will speed up the decomposition in the experimental cup and add these variables. You can choose one or more independent variables.
- Every 2 weeks you will measure the rate of decomposition of the newspaper in each cup.
Student Chart 2.8: Background Research

Use the resources on this page to:
1. Learn about decomposition,
2. Choose your independent variable, and
3. Record the independent variable below.

Possible Resources

- Decomposition article with pictures of rabbit decomposing: http://www.countrysideinfo.co.uk/decompos.htm
- Online or print encyclopedia articles about fungi, bacteria, or decomposition.
- School library texts about fungi and bacteria.
- Online research about what your local city does with its trash. http://www.ci.austin.tx.us/sws/zerowaste_composting.htm
- Discovery United Streaming clips:

Our independent variable that will speed up decomposition in the experimental cup is: ________________________________
Student Chart 2.9: Procedure

Write the steps you will take to complete the experiment. Student Chart 2.7 describes the steps of the investigation. Remember to include how you will set up the experiment, how you will measure the results, and how you will record the results.

1. Label cups—control cop and experimental cup
2.
3.
4.
5.
6.
7.
8.
9.
10.

www.cal.org/create
| ☐ control cup (#1) |
| ☐ experimental cup (#2) |
| ☐ soil |
| ☐ water |
| ☐ circle of single-ply newspaper |
| ☐ transparency grid |
| ☐ independent variable: |
1. What is your hypothesis?

2. Put the same amount of soil, water, and newspaper in each cup. Record the amounts below. Do not forget the units.

 Cup 1—Control Cup 2—Experimental
 __________________________________ __________________________
 __________________________________ __________________________
 __________________________________ __________________________
 __________________________________ __________________________

3. Add the independent variable to the experimental cup.

4. What is the dependent variable in your experiment?

5. Use Student Chart 2.12 to record the size of the newspaper today. You will continue to use Student Chart 2.12 to record the rate of decomposition of the newspaper over time.
Student Chart 2.12: Paper Decomposition Data Table

Measure the circle of newspaper in each cup using the transparency grid. Any square that is less than half full does not count; any square that is more than half full does count. Record your observations in the data table below every 2 weeks.

<table>
<thead>
<tr>
<th>What was in the cup?</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cup #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moist soil, circle of newspaper, room temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cup #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student Chart 2.13: Glossary
Complete glossary entries for these science content words:

- decay
- biomass
- compost
- independent variable
- dependent variable
- activate
- implement

Student Chart 2.14: Key Information
Use these words or phrases to complete the sentences below: activate, biomass, decay, dependent, implemented, independent

- We _____________________ our lab procedure by _________________________________.
- The ______________ variable that we chose to speed the process of decomposition is _________________________.
- The ______________ variable in our investigation is ________.
- The goal of the investigation is to find out the fastest way to ______________ decomposition.
- Over time, the compost pile will ____________.
- ________________ is the total mass of organisms living in a certain area.

Student Chart 2.15: Question for Further Study
Write a sentence about what you still want to learn.

One question I still have or something I want to learn more about is:
Framework for K-12 Science Education: Dimension 3—Life Science

- **Disciplinary Core Idea (LS2.B) Cycles of Matter and Energy Transfer in Ecosystems:** Food webs are models that demonstrate how matter and energy is transferred between producers, consumers and decomposers as the three groups interact—primarily for food—within an ecosystem. Transfers of matter into and out of the physical environment occur at every level—for example; when molecules from food react with oxygen captured from the environment, the carbon dioxide and water thus produced are transferred back to the environment, and ultimately so are waste products, such as fecal material. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.

- **Science and Engineering Practices:** Developing and Using Models, Planning and Carrying out Investigations, Constructing Explanations and Designing Solutions

- **Crosscutting Concepts:** Energy and Matter

Connections to the Common Core State Standards (ELA)

- **L6:** Acquire and use accurately grade-appropriate general academic and domain-specific words and phrases; gather vocabulary knowledge when considering a word or phrase important to comprehension or expression.

Materials

- **Engagement Activity 1**
 - Ziparound cards

Teacher Preparation

- Review instructions for review activity.
- Review Teacher and Student Charts.

Objectives

- **Science:**
 - Students will review science content.
- **Language:**
 - Students will write vocabulary.
Vocabulary:

- Students will review vocabulary from Lessons 1 and 2:
 - General academic: activate, analyze, implement
 - Science content: biomass, carbon cycle, compost, decay, dependent variable, element, heterotroph, independent variable, matter, molecule, nitrogen cycle, organic, organic compound

Overview of Activities

Engagement

- **Activity I: Ziparound.** Teacher distributes cards; students read their cards; one student reads his/her question aloud; all students listen; student with the response reads their answer and this his/her question on the reverse side of the question; students take turns reading their questions and answers in a loop until each student has had a turn.

Evaluation

- **Activity II: Vocabulary and Science Assessments.** Teacher hands out Student Charts for Lesson 3; teacher reviews instructions for each assessment; students complete assessment in allotted time—20 minutes.

- **Activity III: Review of Vocabulary and Science Assessment.** Teacher reviews assessment questions one by one; students correct incorrect responses; teacher asks students if they have any questions; teacher reviews crossword puzzle from previous week.

Extension Activity

- **Activity IV: Crossword Puzzle.** Students complete crossword puzzle when they finish their assessments or as homework.

Lesson Content

Engagement

Student Activity I (slide 2, Ziparound cards)

10 minutes

Activity Overview: Ziparound.

- Review instructions with students.
- Distribute Ziparound cards in a random order.
- Have students read their cards to a partner.
• Choose a student to start the game and continue the game until this same student reads his/her answer.
• Teacher note: You may choose to play the game a second time and try to beat the time of the first game. Or play the game again and have students switch cards.

Evaluation

Student Activity II (slide 3, Student Charts 3.1 and 3.2)
20 minutes
Activity Overview: Vocabulary and Science Assessment. Teacher hands out Student Charts 3.1 and 3.2; teacher reviews instructions for each assessment; students complete assessment in allotted time—20 minutes.
Teacher note: For students who have not finished in 20 minutes, the answers will be reviewed in Student Activity III.

• Hand out Student Charts 3.1 and 3.2.
• Tell students to turn to the Vocabulary Assessment in Student Charts 3.1 and the Science Assessment in Student Chart 3.2.
• Review instructions with students.
• Give students 20 minutes to complete the Charts.
• Students who finish early can work on crossword puzzle. Those who don’t finish early can complete crossword for homework or the following week if they complete activities early.

Student Activity III (slides 4–12)
20 minutes
Activity Overview: Review of Vocabulary and Science Assessment. Teacher reviews assessment questions, one by one; students correct incorrect responses; teacher asks students if they have any questions; teacher reviews crossword puzzle from previous week.
Teacher note: Please devote up to 20 minutes to this activity. It is very important that you review assessment results with students and they correct their mistakes.
• Review assessment items by displaying responses one by one.
• Ask students to highlight number of each incorrect response and correct it.
• Explain any misunderstandings.
Extension

- Student Activity IV: Crossword Puzzle.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I have dependent variable.</td>
<td>9.</td>
</tr>
<tr>
<td>2.</td>
<td>Who has the word that means to make something start working?</td>
<td>10.</td>
</tr>
<tr>
<td>2.</td>
<td>I have activate.</td>
<td>10.</td>
</tr>
<tr>
<td>3.</td>
<td>Who has the word that means a pair or group of atoms held together by one or more chemical bonds?</td>
<td>11.</td>
</tr>
<tr>
<td>3.</td>
<td>I have molecule.</td>
<td>11.</td>
</tr>
<tr>
<td>4.</td>
<td>Who has the word that means something that affects the value of the dependent variable, that you control the value of in an experiment?</td>
<td>12.</td>
</tr>
<tr>
<td>4.</td>
<td>I have independent variable.</td>
<td>12.</td>
</tr>
<tr>
<td>5.</td>
<td>Who has the word that means a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil?</td>
<td>13.</td>
</tr>
<tr>
<td>5.</td>
<td>I have compost.</td>
<td>13.</td>
</tr>
<tr>
<td>6.</td>
<td>Who has the word that means anything that has mass and takes up space?</td>
<td>14.</td>
</tr>
<tr>
<td>6.</td>
<td>I have matter.</td>
<td>14.</td>
</tr>
<tr>
<td>7.</td>
<td>Who has the word that means a compound that contains the element carbon?</td>
<td>15.</td>
</tr>
<tr>
<td>7.</td>
<td>I have organic compound.</td>
<td>15.</td>
</tr>
<tr>
<td>8.</td>
<td>Who has the word that means a substance that cannot be split into simpler substances, where each one is made of just one kind of atom?</td>
<td>1.</td>
</tr>
<tr>
<td>8.</td>
<td>I have element.</td>
<td></td>
</tr>
</tbody>
</table>
Lesson 3 Student Assessments

Teacher Chart 3.1: Answers to Vocabulary Assessment
Write the letter that matches each definition in the space provided.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1. The ______ is the movement of carbon between living and nonliving parts of an ecosystem.</td>
<td>A. activate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2. A(n) ______ is a substance that cannot be split into simpler substances. Each ______ is made of just one kind of atom.</td>
<td>B. analyze</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3. ______ is anything that has mass and takes up space.</td>
<td>C. biomass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4. To ______ is to make something start working.</td>
<td>D. carbon cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>5. A(n) ______ affects the value of the dependent variable; in an experiment, you control the value of the ______.</td>
<td>E. compost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>6. A(n) ______ is a pair or group of atoms held together by one or more chemical bonds.</td>
<td>F. decay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>7. To ______ is to rot and break apart.</td>
<td>G. dependent variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8. A(n) ______ is a compound that contains the element carbon.</td>
<td>H. element</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>9. ______ describes a compound that contains the element carbon; a material made of or by living things or once-living things.</td>
<td>I. heterotroph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>10. To ______ is to examine or think about something carefully to understand it.</td>
<td>J. implement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>11. ______ is a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil.</td>
<td>K. independent variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>12. A(n) ______ is what you are testing in an experiment.</td>
<td>L. matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>14. A(n) ______ is an organism that obtains the energy it needs by feeding on other organisms.</td>
<td>M. molecule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>15. ______ is the total mass of living organisms in a certain area; it can also be matter formed by plants or animals that is used as a fuel, such as wood or dung.</td>
<td>N. organic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>16. To ______ means to carry out or put into action.</td>
<td>O. organic compound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student Chart 3.2: Science Assessment
Read each question and choose the best answer.

1. In a compost bin, bacteria help break down matter into simpler substances. In this process, energy is released back into the environment as...

 A. matter
 B. heat
 C. light
 D. electricity

2. What factors affect the process of decomposition?

 A. amount of bacteria
 B. temperature
 C. size of what is decomposing
 D. all are correct

3. Which of these is an organic molecule?

 A. \(\text{O}_2 \)
 B. \(\text{H}_2\text{O} \)
 C. \(\text{C}_6\text{H}_{12}\text{O}_6 \)
 D. \(\text{N}_2 \)

www.cal.org/create
4. Which concept is best illustrated by the diagram below?

A. The exchange of CO₂ and O₂ in an ecosystem.
B. The effect of limiting factors in a biome.
C. Cycling of nutrients in an ecosystem.
D. Environmental pressures on a population.

5. After grass is cut, fungi and bacteria break down some of the cut grass on the lawn. This process returns nutrients stored in the cut grass to the soil. In this process, the fungi and bacteria act as...

A. producers.
B. decomposers.
C. parasites.
D. prey.

6. Animal cells give off CO₂ (carbon dioxide) as a waste product during respiration. Plants use the carbon dioxide in the process of photosynthesis. This is an example of ...

A. the carbon cycle.
B. decomposition.
C. the Nitrogen cycle.
D. predator-prey interactions.
7. Look at the picture below. It shows a cross section of an alligator nest.

Alligators lay their eggs in nests made of soil and plant material. Just like a compost pile, the temperature of the nest is higher than the temperature of the soil and air around the nest. What creates the heat energy that allows the eggs to hatch?

A. The decay of dead plant material.
B. The size of the eggs.
C. The daily wind currents.
D. The temperature of the nearby river.

8. In the carbon cycle, …

A. carbon moves from living things into the atmosphere.
B. carbon moves from plants to animals.
C. carbon moves from the atmosphere to plants.
D. All are true.
9. Give this diagram an appropriate title:

A. Nitrogen Cycle
B. Water Cycle
C. Carbon Dioxide-Oxygen Cycle
D. Carbon Cycle

10. Explain the ways that nature recycles:

Across

3. A [dependent] variable is what you are testing in an experiment.
5. A [heterotroph] is an organism that obtains the energy it needs by feeding on other organisms.
6. [Organic] describes a compound that contains the element carbon; a material made of or by living things or once-living things.
8. [Biomass] is the total mass of living organisms in a certain area; it can also be matter formed by plants or animals that is used as a fuel, such as wood or dung.
10. A [molecule] is a pair or group of atoms held together by one or more chemical bonds.
11. To [decay] is to rot and break apart.
12. [Matter] is anything that has mass and takes up space.
14. An [element] is a substance that cannot be split into simpler substances. Each [element] is made of just one kind of atom.
15. The [Carbon] cycle is the movement of [carbon] between living and nonliving parts of an ecosystem.

Down

1. [Compost] is a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil.
2. An organic [compound] is a compound that contains the element carbon.
7. The [Independent] variable affects the value of the dependent variable; in an experiment, you control the value of the ________ variable.
9. To [implement] means to carry out or put into action.
13. To [activate] is to make something start working.
16. To [analyze] is to examine or think about something carefully to understand it.
Cycles Set

Cycle Set Review: The Carbon Cycle and Decomposition
Ziparound

1. Each student gets 1 or 2 Ziparound cards.
 • Each card has an answer on one side and a question on the other side.
 • Somebody in the room has a card with the answer to your question.

2. Take a minute to read your card to a partner.
3. One student will stand up to read his/her question.
4. Listen to the question.
5. If you have the answer, stand up and read it and then read your question.
6. The game continues until the person with the first question that started the game has read his or her answer.

Answer: I have....
Question: Who has....?

[There is no Student Chart for this activity].

Pacing for Ziparound: 10 minutes.
• Review instructions with students.
• Distribute Ziparound cards in a random order.
• Have students read their cards to a partner.
• Choose a student to start the game and continue the game until this same student reads his/her answer.

Teacher’s note: You may choose to play the game a second time and try to beat the time of the first game. Or play the game again and have students switch cards.
Assessments

- Turn to Student Charts 3.1 and 3.2
- These charts assess vocabulary and science knowledge covered in the last 2 lessons.
- Now we will review the instructions to both assessments and then you can begin.
- You have 20 minutes to complete the assessments.
- Once you finish, start the crossword puzzle, Student Chart 3.3.

Pacing for Students to Complete Assessments: 20 minutes
- Hand out Student Charts for lesson 3.
- Review instructions with students.
- Give students 20 minutes to complete the Charts.
3.1: Assessment Answers

D. 1. The **carbon cycle** is the movement of carbon between living and nonliving parts of an ecosystem.

H. 2. A(n) **element** is a substance that cannot be split into simpler substances. Each **element** is made of just one kind of atom.

L. 3. **Matter** is anything that has mass and takes up space.

Pacing for Review of Assessments: 20 minutes

- Have students turn to Student Chart 3.1.
- Display responses.
- Have students correct responses as necessary.
- Explain any misunderstandings.
4. To _______ is to make something start working.

5. A(n) _______ affects the value of the dependent variable; in an experiment, you control the value of the _______.

6. A(n) _______ is a pair or group of atoms held together by one or more chemical bonds.

• Follow the same routine.
3.1: Assessment Answers, cont.

F. 7. To decay is to rot and break apart.

O. 8. A(n) compound is a compound that contains the element carbon.

N. 9. organic describes a compound that contains the element carbon; a material made of or by living things or once-living things.

B. 10. To analyze is to examine or think about something carefully to understand it.

• Follow the same routine.
3.1: Assessment Answers, cont.

E. 11. Compost is a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil.

G. 12. A(n) dependent variable is what you are testing in an experiment.

I. 14. A(n) heterotroph is an organism that obtains the energy it needs by feeding on other organisms.

• Follow the same routine.
3.1: Assessment Answers (cont.)

C 15. __biomass___ is the total mass of living organisms in a certain area; it can also be matter formed by plants or animals that is used as a fuel, such as wood or dung.

J 16. To __implement__ means to carry out or put into action.

•Follow the same routine.
• Have students turn to Student Chart 3.2.
• Have students read each question and their answer.
• Display responses.
• Have students correct responses as necessary.
• Explain any misunderstandings.
3.2: Assessment Answers (cont.)

4. Which concept is best illustrated by the diagram below?

A. the exchange of CO₂ and O₂ in an ecosystem.
B. the effect of limiting factors in a system.
C. cycling of nutrients in an ecosystem.
D. environmental pressure on a population.

5. After grass is cut, fungi and bacteria break down some of the cut grass on the lawn. This process returns nutrients stored in the cut grass to the soil. In this process, the fungi and bacteria act as:
 A. producers
 B. decomposers
 C. parasites
 D. prey.

6. Animals can give off CO₂ (carbon dioxide) as a waste product during respiration. Plants use the carbon dioxide in the process of photosynthesis. This is an example of:
 A. the carbon cycle
 B. decomposition
 C. the nitrogen cycle
 D. predator-prey interactions

• Follow the same routine.
3.2: Assessment Answers (cont.)

7. Look at the picture below. It shows a cross section of an alligator nest.

Cross section of an alligator nest

Alligators lay their eggs in nests made of soil and plant materials. Just like a compost pile, the temperature of the nest is higher than the temperature of the soil and air around the nest. What causes the nest to emerge that shows the eggs:

- The decay of dead plant material
- The soil of the egg
- The difference in temperature
- The temperature of the nearby river

8. In the carbon cycle,

A. carbon moves from Dead Things into the atmosphere
B. carbon moves from plants to animals
C. carbon moves from the atmosphere to plants
D. all are true

Follow the same routine.
3.2: Assessment Answers (cont.)

9. Draw a diagram to appropriate title

10. Explain the ways that matter recycle

• Follow the same routine.
Lesson 3 Cycles Set Student Assessment

Student Chart 3.1: Vocabulary Assessment

Write the letter that matches each definition in the space provided.

| |
| |
| 1. The ______ is the movement of carbon between living and nonliving parts of an ecosystem. |
| 2. A(n) ______ is a substance that cannot be split into simpler substances. Each ______ is made of just one kind of atom. |
| 3. ______ is anything that has mass and takes up space. |
| 4. To ______ is to make something start working. |
| 5. A(n) ______ affects the value of the dependent variable; in an experiment, you control the value of the ______. |
| 6. A(n) ______ is a pair or group of atoms held together by one or more chemical bonds. |
| 7. To ______ is to rot and break apart. |
| 8. A(n) ______ is a compound that contains the element carbon. |
| 9. ______ describes a compound that contains the element carbon; a material made of or by living things or once-living things. |
| 10. To ______ is to examine or think about something carefully to understand it. |
| 11. ______ is a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil. |
| 12. A(n) ______ is what you are testing in an experiment. |
| 13. The ______ is the movement of nitrogen between the living and nonliving parts of an ecosystem. |
| 14. A(n) ______ is an organism that obtains the energy it needs by feeding on other organisms. |
| 15. ______ is the total mass of living organisms in a certain area; it can also be matter formed by plants or animals that is used as a fuel, such as wood or dung. |
| 16. To ______ means to carry out or put into action. |

A. activate
B. analyze
C. biomass
D. carbon cycle
E. compost
F. decay
G. dependent variable
H. element
I. heterotroph
J. implement
K. independent variable
L. matter
M. molecule
N. organic
O. organic compound
Student Chart 3.2: Science Assessment
Read each question and choose the best answer.

1. In a compost bin, bacteria help break down matter into simpler substances. In this process, energy is released back into the environment as…
 - A. matter.
 - B. heat.
 - C. light.
 - D. electricity.

2. What factors affect the process of decomposition?
 - A. Amount of bacteria
 - B. Temperature
 - C. Size of what is decomposing
 - D. All are correct

3. Which of these is an organic molecule?
 - A. O_2
 - B. H_2O
 - C. $C_6H_{12}O_6$
 - D. N_2
4. Which concept is best illustrated by the diagram below?

A. The exchange of CO₂ and O₂ in an ecosystem.
B. The effect of limiting factors in a biome.
C. Cycling of nutrients in an ecosystem.
D. Environmental pressures on a population.

5. After grass is cut, fungi and bacteria break down some of the cut grass on the lawn. This process returns nutrients stored in the cut grass to the soil. In this process, the fungi and bacteria act as...

A. producers.
B. decomposers.
C. parasites.
D. prey.

6. Animal cells give off CO₂ (carbon dioxide) as a waste product during respiration. Plants use the carbon dioxide in the process of photosynthesis. This is an example of...

A. the carbon cycle.
B. decomposition.
C. the nitrogen cycle.
D. predator-prey interactions.
7. Look at the picture below. It shows a cross section of an alligator nest.

Alligators lay their eggs in nests made of soil and plant material. Just like a compost pile, the temperature of the nest is higher than the temperature of the soil and air around the nest. What creates the heat energy that allows the eggs to hatch?

A. The decay of dead plant material.
B. The size of the eggs.
C. The daily wind currents.
D. The temperature of the nearby river.

8. In the carbon cycle, ...

A. carbon moves from living things into the atmosphere.
B. carbon moves from plants to animals.
C. carbon moves from the atmosphere to plants.
D. All are true.
9. Give this diagram an appropriate title:

A. Nitrogen Cycle
B. Water Cycle
C. Carbon Dioxide-Oxygen Cycle
D. Carbon Cycle

10. Explain the ways that nature recycles:

Student Chart 3.3: Student Crossword Puzzle
Use your glossary to complete the crossword puzzle.

Across
3. A _______ variable is what you are testing in an experiment.
5. A _______ is an organism that obtains the energy it needs by feeding on other organisms.
6. _______ describes a compound that contains the element carbon; a material made of or by living things or once-living things.
8. _______ is the total mass of living organisms in a certain area; it can also be matter formed by plants or animals that is used as a fuel, such as wood or dung.
10. A _______ is a pair or group of atoms held together by one or more chemical bonds.
11. To _______ is to rot and break apart.
12. _______ is anything that has mass and takes up space.
14. An _______ is a substance that cannot be split into simpler substances. Each _______ is made of just one kind of atom.
15. The _______ cycle is the movement of carbon between living and nonliving parts of an ecosystem.

Word Bank
analyze
activate
implement
organic
organic
matter
molecule
element
carbon
decay
biomass
compost
independent
dependent
heterotroph
Down
1. ________ is a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil.
2. An organic ________ is a compound that contains the element carbon.
7. The ________ variable affects the value of the dependent variable; in an experiment, you control the value of the ________ variable.
9. To ________ means to carry out or put into action.
13. To ________ is to make something start working.
16. To ________ is to examine or think about something carefully to understand it.
<table>
<thead>
<tr>
<th>Vocabulary Word</th>
<th>Cognate?</th>
<th>Definition</th>
<th>Question</th>
<th>Picture</th>
<th>My Understanding: drawing, examples, or notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic</td>
<td></td>
<td>Organic describes a compound that contains the element carbon; a material made of or by living things or once-living things.</td>
<td>An example of an organic compound from a tree is</td>
<td></td>
<td>drawing, examples, or notes</td>
</tr>
<tr>
<td>Orgánico</td>
<td></td>
<td>Orgánico describe un compuesto que contiene el elemento carbono: un material que se formó a partir de seres vivos que alguna vez existieron.</td>
<td>Picture of organic compound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An organic compound</td>
<td></td>
<td>An organic compound is a compound that contains the element carbon.</td>
<td>Name an organic compound:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matter</td>
<td></td>
<td>Matter is anything that has mass and takes up space.</td>
<td>Name something that has mass and takes up space on your desk:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El materia</td>
<td></td>
<td>El materia es cualquier cosa que tiene masa y ocupa espacio y que está compuesta de diferentes tipos de átomos; incluye el calor, el sonido o la luz.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English:</td>
<td>A molecule is a pair or group of atoms held together by one or more chemical bonds.</td>
<td>The CO₂ molecule contains two elements: _______________ and _______________.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Español:</td>
<td>Una molécula es un par o un grupo de átomos que están unidos por uno o más enlaces químicos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| English: | An element is a substance that cannot be split into simpler substances. Each element is made of just one kind of atom. | How many atoms are there in the element carbon? _______________ _______________ _______________. |
| Español: | Un elemento es material natural o sintético que no puede romperse en material más simple. Cada elemento está compuesto de solo un tipo de átomo. | |

<p>| English: | The carbon cycle is the movement of carbon between living and nonliving parts of an ecosystem. | The process of photosynthesis produces _______________, which contains carbon. |
| Español: | El ciclo del carbono es la transferencia de carbono a través de las partes vivas e inertes de un ecosistema. | |</p>
<table>
<thead>
<tr>
<th>English</th>
<th>Español</th>
</tr>
</thead>
<tbody>
<tr>
<td>The nitrogen cycle is the movement of nitrogen between the living and non-living parts of an ecosystem.</td>
<td>El ciclo del nitrógeno es la transferencia de nitrógeno entre las partes vivas e inertes de un ecosistema.</td>
</tr>
<tr>
<td>The nitrogen enters the soil when __________________________.</td>
<td></td>
</tr>
<tr>
<td>To analyze is to examine or think about something carefully to understand it.</td>
<td>Analizar es examinar en detalle o pensar con cuidado en algo con el objetivo de entenderlo.</td>
</tr>
<tr>
<td>How would you analyze how many cell phone minutes your family used this month? __________________________.</td>
<td></td>
</tr>
<tr>
<td>To decay is to rot and break apart.</td>
<td>Decaer es descomponerse o pudrirse.</td>
</tr>
<tr>
<td>How can you tell when you have left an apple in your lunchbox long enough for it to start decaying? __________________________.</td>
<td></td>
</tr>
<tr>
<td>English:</td>
<td>Biomass is the total mass of living organisms in a certain area; it can also be matter formed by plants or animals that is used as a fuel, such as wood or dung.</td>
</tr>
<tr>
<td>Español:</td>
<td>Biomasa es la masa total de los organismos vivos en un área específica. También se refiere a la materia formada por plantas y animales que es usada como combustible, como lo son la madera o el estiércol.</td>
</tr>
<tr>
<td>English:</td>
<td>Estimate the biomass of your home, including the outside of the property.</td>
</tr>
<tr>
<td>Español:</td>
<td>Estime la biomasa de su hogar, incluyendo el exterior de la propiedad.</td>
</tr>
</tbody>
</table>

English:	Compost is a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil.
Español:	El abono es una mezcla de hojas, vegetales o estiércol que se encuentran en proceso de descomposición. Se usa para mejorar la calidad del suelo del jardín.
English:	The ingredients needed for composting include:
Español:	Elabora la lista de ingredientes necesarios para compostar:
English:	An independent variable affects the value of the dependent variable; in an experiment, you control the value of the independent variable.
Español:	La variable independiente afecta el valor de la variable dependiente; en un experimento, tú controlas el valor de la variable independiente.
English:	The independent variable in our composting investigation is ___________________ ___________________ ___________________
Español:	___________________ ___________________ ___________________
English:	A dependent variable is the what you are testing in an experiment.
Español:	La variable dependiente es lo que se pone a prueba en un experimento.
English:	The dependent variable in our composting investigation is ___________________ ___________________ ___________________
Español:	___________________ ___________________ ___________________
English:	To activate is to make something start working.
Español:	Activar es hacer que algo comience a funcionar.
English:	Name some things that are activated with a password.
Español:	___________________ ___________________ ___________________
English:	To implement means to carry out or put into action.
Español:	Implementar significa llevar a cabo o poner en acción.
English:	Describe some laws that you think should be implemented in the future.
Español:	___________________ ___________________ ___________________
organic

Carbon Atom

orgánico
- **Organic** describes a compound that contains the element carbon; a material made of or by living things or once-living things.

- **Orgánico** describe un compuesto que contiene el elemento carbono; un material que se formó a partir de seres vivos que alguna vez existieron.
organic compound

compuesto orgánico

www.cal.org/create
• An organic compound is a compound that contains the element carbon.

• Un compuesto orgánico es un compuesto que contiene el elemento carbon.
matter

1. Matter is all matter has mass and takes up space.

2. Molecules are made of atoms. Some matter, like water, is made of molecules.

materia

www.cal.org/create
• **Matter** is anything that has mass and takes up space.

• El **materia** es cualquier cosa que tiene masa y ocupa espacio y que está compuesta de diferentes tipos de átomos; incluye el calor, el sonido o la luz.
molecule

molécula
• A molecule is a pair or group of atoms held together by one or more chemical bonds.

• Una molécula es un par o un grupo de átomos que están unidos por uno o más enlaces químicos.
element

www.cal.org/create
• An element is a substance that cannot be split into simpler substances. Each element is made of just one kind of atom.

• Un elemento es material natural o sintético que no puede romperse en materiales más simples. Cada elemento está compuesto de solo un tipo de átomo.
carbon cycle

Cicles
Word Cards

www.cal.org/create

www.cal.org/create
• The **carbon cycle** is the movement of carbon between living and nonliving parts of an ecosystem.

• **El ciclo del carbono** es la transferencia de carbono a través de las partes vivas e inertes de un ecosistema.
nitrogen cycle

ciclo del nitrógeno
• The nitrogen cycle is the movement of nitrogen between the living and nonliving parts of an ecosystem.

• El ciclo del nitrógeno es la transferencia de nitrógeno entre las partes vivas e inertes de un ecosistema.
analyze

analizar
• To **analyze** is to examine or think about something carefully to understand it.

• **Analizar** es examinar en detalle o pensar con cuidado en algo con el objetivo de entenderlo.
decay

decaer

www.cal.org/create
• To decay is to rot and break apart.

• Decaer es descomponerse o pudrirse.
biomass

biomasa

www.cal.org/create
• **Biomass** is the total mass of living organisms in a certain area; it can also be matter formed by plants or animals that is used as a fuel, such as wood or dung.

• **Biomasa** es la masa total de los organismos vivos en un área específica. También se refiere a la materia formada por plantas y animales que es usada como combustible, como lo son la madera o el estiércol.
compost

abono
• **Compost** is a mixture of decaying leaves, vegetables, or manure that is used to improve garden soil.

• **El abono** es una mezcla de hojas, vegetales o estiércol que se encuentran en proceso de descomposición. Se usa para mejorar la calidad del suelo del jardín.
independent variable

Temperature as Water Is Heated

Time (minutes)

variable independiente
• An independent variable affects the value of the dependent variable; in an experiment, you control the value of the independent variable.

• La variable independiente afecta el valor de la variable dependiente; en un experimento, tú controlas el valor de la variable independiente.
dependent variable

variable dependiente
• A **dependent variable** is what you are testing in an experiment.

• La **variable dependiente** es lo que se pone a prueba en un experimento.
activate

activar
• To **activate** is to make something start working.

• **Activar** es hacer que algo comience a funcionar.
implement

implementar

www.cal.org/create
• To **implement** means to carry out or put into action.

• **Implementar** significa llevar a cabo o poner en acción.