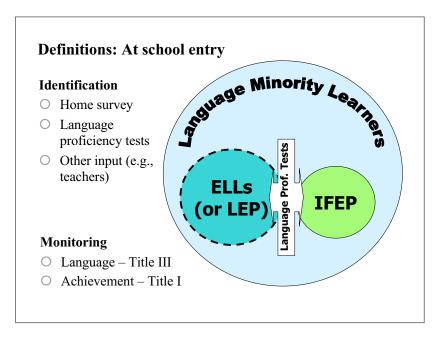

Assessment, Accountability, and Instruction for ELLs Under NCLB

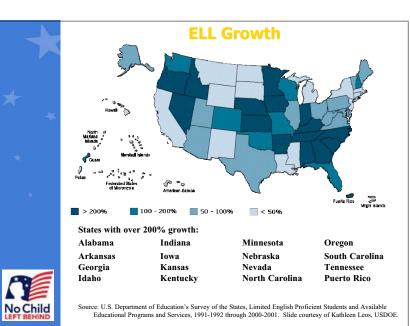
David J. Francis and Mabel Rivera University of Houston

Overview of the Talk

- Establish a framework for more meaningful integration of English Language Learners (ELLs) into local, state, and federal accountability systems
- O There are always at least two levels of implications to this effort, namely those that relate to...
 - · effective policy, and
 - improved understanding of the development and academic achievement of ELLs

Overview (cont)


- O Background on ELLs
- O Examine the unique challenges posed by Limited English Proficiency as a subgroup under NCLB
- O Examine the link between language proficiency and content mastery
- O Examine the effectiveness of test accommodations for ELLs
- O Conclude by suggesting some ideas for improving accountability for ELLs under NCLB



Who Are English Language Learners?

- O Language Minority Student (LM)
 - a child who hears and/or speaks a language other than English in the home (see August & Shanahan, 2006 for review of literature)
- O English Language Learner (ELL)
 - an LM student designated locally (i.e., by the state) as limited English Proficient
- $\bigcirc \ \ \textbf{Limited English Proficient} \ (LEP)$
 - an LM student whose limited command of English prevents independent participation in instruction

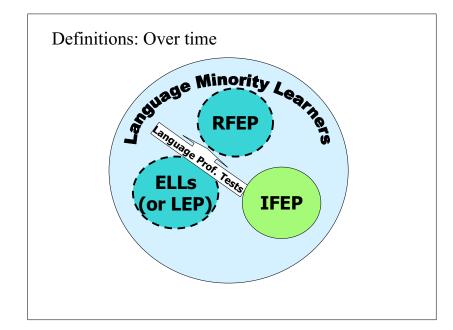
CREATE 2007 David J. Francis

Who Are English Language Learners?

- Over 9M LM students, roughly 5.5M classified as LEP
- O Comprise one of the fastest-growing groups among the schoolaged population in this nation
 - 169% from 1979 to 2003 (vs. 12% growth in general)
 - Expected to be 30% of school-aged population in 2015
 - 19 states have reported 10-year growth in excess of 200%
- O Largest and fastest growing segment of ELL population is
 - Students who immigrated before Kindergarten, and
 - U.S. born children of immigrants

Who Are English Language Learners?

- O Heterogeneous population
 - Time / age of arrival
 - Prior school experience
 - Parental education
 - Degree of economic and social advantage/disadvantage
 - Home Language
- O Well over 400 different home languages among LMs in US
 - Spanish (over 70%); Vietnamese (roughly 4%)
 - Specific geographic regions have significant numbers of children speaking a particular language (Chinese; Russian; Arabic, etc.)



Academic performance indicators for ELLs

- O Compared to native English-speaking peers on Grade 4 NAEP, ELLs were
 - 1/4th as likely to score proficient or above in Reading
 - 1/3rd as likely in Math
- O ELLs also perform more poorly on State tests
 - For example, in 2002, only 18.7% of designated ELLs scored proficient in reading on state tests (9 states did not report)
- O However, state and federal accountability systems may bias such comparisons against ELLs

Comparison of ELLs and former ELLs on State Reading Test in Texas 2002

	Level of	Language Profi	ciency for ELL	Groups
Grade	Beginning	Intermediate	Advanced (2002)	Advanced (2000)
3	13.9	38.3	90.6	90.0
4	13.1	37.4	84.1	93.6
5	16.5	24.1	69.5	96.1
6	14.5	12.8	46.0	86.8
7	15.0	12.4	43.9	85.0
8	23.2	19.2	55.3	90.2
10	21.3	28.5	66.4	85.8
Overall	15.8	30.4	76.4	89.6

http://www.tea.state.tx.us/student.assessment/reporting/results/rpteanalysis/2002/reading/statewide.html

Comparison of Graduation Rates among ELL, Former ELLs, and Never ELLs in New York City¹

Group	After four Year s of High School	After 7 years of High School			
Current ELLs	32.6	49.5			
Former ELLs	60.1	76.5			
Never ELLs	54.5	70.5			

¹Cohort entering grade 9 in 1996. http://www.regents.nysed.gov/2005Meetings/March2005/0305emsevesidd4.html

Conditional Random Effects for ELA and MATH predicted from Years in US, ELP, and Years + ELP

			EL			MATH							
Grade	Source	Years in US	?R 2	ELP - Perf.	?R 2	Years and ELP	?R 2	Years in US	?R 2	ELP - Perf.	?R 2	Years and ELP	?R 2
4	District	27.21	-0.13	15.13	0.37	14.73	0.39	41.11	-0.12	29.10	0.21	26.51	0.28
	Schools	25.04	0.02	15.66	0.39	15.72	0.39	32.74	0.04	22.62	0.34	22.85	0.33
	Students	108.37	0.03	81.83	0.27	81.67	0.27	145.14	0.03	119.72	0.20	118.84	0.21
5	District	25.73	-0.02	11.62	0.54	11.11	0.56	45.24	-0.04	36.52	0.16	35.45	0.19
	Schools	14.83	0.05	9.25	0.41	9.53	0.39	33.28	0.05	23.34	0.33	22.88	0.35
	Students	104.37	0.03	70.30	0.35	69.65	0.35	149.57	0.01	120.02	0.21	117.86	0.22
-6	District	22.15	-0.05	9.16	0.56	8.59	0.59	49.56	-0.02	35.88	0.26	31.27	0.36
	Schools	18.24	0.11	12.68	0.38	12.90	0.37	23.81	0.01	20.05	0.16	20.34	0.15
	Students	97.03	0.04	66.38	0.34	66.07	0.34	133.72	0.01	111.82	0.18	109.45	0.19
7	District	27.88	-0.08	11.20	0.57	11.05	0.57	61.72	-0.05	47.32	0.20	43.68	0.26
	Schools	13.08	0.26	4.53	0.74	4.63	0.74	19.42	0.03	14.44	0.28	15.03	0.25
	Students	104.51	0.03	60.65	0.44	60.68	0.44	119.63	0.01	97.70	0.19	95.91	0.21
8	District	26.70	-0.02	10.87	0.58	9.54	0.63	51.31	0.02	42.76	0.18	37.47	0.28
	Schools	22.99	0.05	7.58	0.69	8.46	0.65	30.17	-0.02	22.09	0.26	21.84	0.26
l i	Students	113.83	0.01	73.83	0.36	72.40	0.37	109.00	0.01	92.13	0.16	89.03	0.19

^a ?R ²computed as change in variance component from unconditional model (Table 5) relative to magnitude of variance component in unconditional model (Table 5 - Table 6)/(Table 5).

Data from Another State: 3-Level Model for ELA and Math

- O Unconditional Model (within grade)
 - V(Students(schools))
 - V(Schools(Districts))
 - V(Districts)
- Conditional Models
 - Years in US
 - ELP
 - Years in US and ELP

Conditional Random Effects for ELA and MATH predicted from Years in US + ELP measured as (1) Performance Levels, (2) Scaled Score, or (3) Domain Scores

			EI.			матн							
Grade	Source	Years + ELP-PL	?R 2	Years + ELP-SS	?R ²	Years + ELP-DS	?R ²	Years ELP-PL	?R2	Years + ELP-SS	?R ²	Years and ELP-DS	?R2
4	District	14.73	0.39	14.00	0.42	10.92	0.54	26.51	0.28	25.27	0.31	20.12	0.45
	Schools	15.72	0.39	14.90	0.42	12.81	0.50	22.85	0.33	22.08	0.35	18.65	0.45
	Students	81.67	0.27	74.28	0.33	60.20	0.46	118.84	0.21	112.80	0.25	100.78	0.33
5	District	11.11	0.56	10.72	0.57	7.66	0.70	35.45	0.19	33.94	0.22	25.35	0.42
	Schools	9.53	0.39	8.27	0.47	7.21	0.54	22.88	0.35	22.44	0.36	20.03	0.43
	Students	69.65	0.35	65.37	0.39	60.02	0.44	117.86	0.22	112.85	0.25	105.12	0.31
6	District	8.59	0.59	7.02	0.67	7.60	0.64	31.27	0.36	28.26	0.42	26.63	0.45
	Schools	12.90	0.37	10.78	0.47	6.67	0.67	20.34	0.15	18.99	0.21	17.36	0.27
	Students	66.07	0.34	61.97	0.39	56.49	0.44	109.45	0.19	104.52	0.23	97.72	0.28
7	District	11.05	0.57	11.09	0.57	8.04	0.69	43.68	0.26	42.19	0.28	34.16	0.42
Ī	Schools	4.63	0.74	4.05	0.77	3.06	0.83	15.03	0.25	14.21	0.29	12.25	0.39
	Students	60.68	0.44	57.85	0.47	53.16	0.51	95.91	0.21	93.23	0.23	85.99	0.29
8	District	9.54	0.63	8.36	0.68	3.32	0.87	37.47	0.28	35.03	0.33	27.24	0.48
	Schools	8.46	0.65	7.14	0.70	5.52	0.77	21.84	0.26	20.94	0.29	19.99	0.33
	Students	72.40	0.37	69.24	0.40	60.64	0.47	89.03	0.19	85.41	0.22	75.99	0.31

^a ?R ²computed as change in variance component from unconditional model (Table 5) relative to magnitude of variance component in unconditional model (Table 5-Table 7)/(Table 5).

Analysis Summary

- O Years in the US predicted ELA and MATH performance at the district, school, and student levels
- O However, Years in the US was a relatively weak predictor compared with ELP
- O When ELP was included with Years in US, the effects of Years in the US were unsystematic and small;
- O Effects of ELP remained strong and consistent (i.e., outcomes increased with increases in ELP)

Including ELLs in Accountability Assessments

- O Raises educators' awareness of ELLs' academic needs
- O But also raises questions about the appropriateness and validity of content area assessments...

Analysis Summary

- O How ELP was measured made some difference in its value as a predictor; Domain Scores predicted best
- Using Domain Scores for Reading and Writing only was almost as good as using Reading, Writing, Speaking, and Listening
- O These results suggest that the academic components of the language assessment are the most important predictors of content area achievement
- O It is noteworthy that ELP performance explained so much of the school and district variability in ELA and MATH

Validity of Test Scores for ELLs

- Threatened if scores reflect irrelevant language abilities rather than content knowledge (AERA, APA, NCME, 1999)
- Strong link between language proficiency & performance in content areas

(Abedi & Leon, 1999; Bailey, 2005; Butler & Castellon-Wellington, 2005)

 Gaps between ELLs and non-ELLs vary as a function of language demands of the test

(Abedi, Lord, Hofstetter, & Baker, 2000; Abedi, Leon, & Mirocha, 2003; Abedi, Lord, & Plummer, 1997).

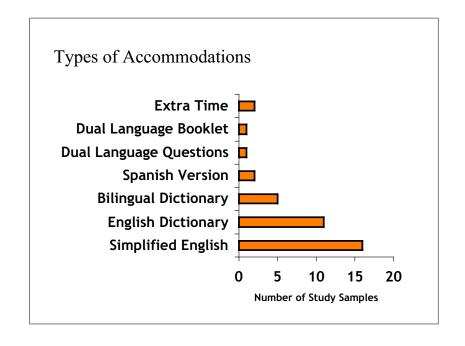
Test Accommodations

- Alterations to the test or testing conditions
- Address specific needs (e.g., limited English proficiency) but do not change the construct
- O Dual criteria for appropriateness:
 - Effectiveness: Accommodation should improve the scores of students who need it.
 - Validity: (in part) Accommodation should not improve the scores of students who do not need it.

Science Math Reading State Test NAEP+TIMSS NAEP Sth Grade 6th Grade

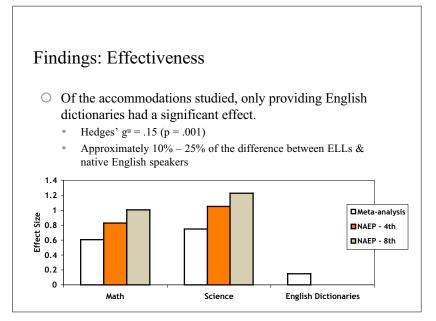
CREATE 2007 David J. Francis

Meta-Analytic Review of Accommodations for ELLs


Inclusion criteria

- Experimental & quasi-experimental studies focused on the effects of accommodations for ELLs
- Journal articles & technical reports
- Appropriate data reported


Meta-analysis


- Effectiveness: average effect for ELLs
- Moderators: Interactions with grade, domain, extra time, language of instruction, study design (experimental vs. quasi-experimental)
- Validity: average effect for native English speakers

CREATE 2007 David J. Francis

Conclusions

- Future research should investigate accommodations on state tests.
- O Question the assumption that accommodations will significantly improve pass-rates for ELLs.
- O Taken together, the results highlight the importance of instruction in the academic language which is at the heart of developing content area knowledge.
- O They further highlight that children need to be taught in order to close achievement gaps.

Broader Implications for Assessment and Accountability

- O We clearly have a reporting problem that is fueled by the dynamic nature of the ELL category
- O Why not...?
 - Report achievement results within ELP proficiency levels
 - ▲ Beginner,
 - ▲ Intermediate,
 - ▲ Advanced Intermediate,
 - → Fluent English Proficient

Broader Implications for Assessment and Accountability

- An accountability model that addresses these issues will provide more accurate information to teachers, principals, and other stakeholders about the performance of ELLs
- O Place emphasis on integration of language instruction into content area instruction, and
- O Increase the emphasis on teaching content when ELLs first reach school
- O Increase the demand for language tests that will serve as better barometers of ELL students' acquisition of the academic language skills needed to master content domains.

Broader Implications for Assessment and Accountability

- O Why not...?
 - Report acquisition of language proficiency as a function of Years in US (or Years in State)
 - Integrate Title III and Title I assessment by taking into account the developmental nature of language, and the central role of language in content acquisition
 - ▲ Index weighted average of ELP and Content Tests

 - ▲ Weight for ELP declines with increasing years
 - ▲ Weight for Content Test increases with increasing years

Thank You

dfrancis@uh.edu