

Ed Policy One-Takes

http://cal.org/resource-center/freeresources

Ed Policy One-Takes

This policy-focused mini-series examines the real-time implementation of state and federal policies enacted in response to COVID-19 across the U.S. education system. We focus on how these new laws, regulations, waivers, etc. are and will affect State Education Agencies (SEAS) and tocal Education Agencies (LEAS).

Watch now:

- The Impact of Assessment Waivers \& the Future of the U.S. Education System

UP NEXT: Click to Register

- Funding Opportunities (April 23 @ 1:00 PM EDT)
- Virtual Instruction (May 7th © 1:00 PM EDT)

Stay tuned for a 3-part series of webinars for Dual language program educators.
AccalSolutions

EDUCATOR VOICES

AccalSolutions

GLOBE

Student TL Engagement

Sandra A. Daniel
Language Coordinator
April 3rd, 2020

Math Language is just as confusing as English

"So in English a double negative is bad, but in Math it's a positive?"
\qquad

Take into consideration...

- College and career readiness standards require educators to consider that math has unique language features.
\square Many math teachers have their students do journaling on the math learning and math use experiences.
\square Some math teachers make use of cooperative learning-- an environment that encourages students to communicate mathematical ideas.
\square Most math assessment instruments require that students explain what it is they are doing as they solve the math problems in the assessment.
- Taking this into consideration, what does it mean for ELs learning math in the English speaking classroom?
A) CDLSolutions

Math Language

prepositions: add to, subtract from, multiply by, divide by, take away from, decrease by, increase by, etc.
formula and equation language: The value of a equals five less than b. $d=r x t$.
\square steps of a process: When solving a word problem, first identify all the important information.
\square signal words for addition: altogether, combined, in excess, sum, greater, in all, both, total, raise, made larger, added to, increased, plus, more, and, etc.

[^0]
Math Language, cont.

signal words for multiplication: times, multiply by, multiplicand, multiplier, percent of, interest on, times as much, product, doubled, tripled, etc.
\square signal words for division: divide, ratio, fraction, quotient, average, equal pieces, per group, in each group, goes into, contained in, every, shared, etc.

Identify the Language Challenges

\square Have you ever noticed that when people eat at a restaurant, they usually leave a little extra money for the server? This extra money is a called a service tip, and in the United States, it usually amounts to about 15 to 20 percent of the total bill. The greater the restaurant bill, the greater the tip will be. To calculate the tip, you multiply the amount of the bill by the percentage tip you want to leave. For example, say you go to a restaurant with a friend and the total bill is $\$ 20.00$. If you want to leave a 15% tip, here is how you can calculate it:

- Multiply $\$ 20.00$ by 15%, or 0.15 . This is the amount of the tip. $\$ 20.00 \times 0.15=\$ 3.00$
- Next, add the tip to the price of the bill. This is the total amount you will pay. $\quad \$ 20.00+\$ 3.00=\$ 23.00$
$\square \quad$ Therefore, $\$ 23.00$ is the total price for the meal, including the service tip.
A CALSolutions

Forget the Question

The Obstacle: Sometimes when we put a problem on the board, students notice the question and got into one of two modes:

- I don't understand, l'll never get this.
- I know exactly what to do, let me work as quickly as I can.
\square The Solution: Use "I Notice, I Wonder" Brainstorm, but include only the mathematical scenario. Leave out the question.
- Only after all students understand the scenario thoroughly, reveal the question
- Ask students, "If this story were the beginning of a math problem, what could the math problem be?
Adapted from NCTM, Beginning to Problem Solve with "I Notice, I Wonder"

Poll
How confident are you in accessing and creating digital resources for the instruction English learners? Beginner Intermediate Advanced Proficient
A) CDLSolutions

Beat the Clock Ball Toss

\square One student becomes the Timekeeper. The timekeeper:

- Sets the timer, turns the card with number concept (e.g., Counting by 2 s up to 30,6 times tables up to 6×12, names of geometric shapes (2 D and 3 D), and chooses the first participant by tossing the ball.
\square That student thinks of an association with the concept and then tosses the ball to another student who thinks of another.
\square Repeat until the ball has gone around the group $2 x$ or until all answers are given.
\square Stop the timer and as a group summarize what was covered during the game.
\square The timekeeper writes out the summary for the group.
\square The last student holding the ball becomes the new timekeeper for the next go-around.
Ancollolutions

Multiplication Dominos

Dominos are placed face down on the table.
\square Students take and turn two dominos over.
\square Students then:

The student with the greatest/lowest (students decide) number wins.
\square Variation: Each domino is taken as a fraction and is added, subtracted, multiplied or divided. For example:

Race to 27

\square Deal out all of the playing cards to the players. Players put their pile of cards in front of themselves face down
$\square \quad 1^{\text {st }}$ player turns over their top card and places it in the center.
\square The next player turns over their card placing it on top of the first card. This player adds the value of the two cards.
\square The next player does the same adding the value of their card to the previous total.
\square Play continues until the total reaches 27 or over. The player who puts down the card that takes the total to 27 takes all of the cards in this pile and shuffles them into their pile.
\square Play continues for a set time or until one player has no cards left. The winner is the person with the most cards.
\square For a more advanced version you can play Race to 50 or
Race to 100

Mean, Median, Mode, \& Range Game

Backward Building (story problems)

\square Purpose: to help learners link language to operations in story problems
\square Start with a full visual equation:

\square Begin to build in language first by naming the equation orally: eight times three minus nine equals fifteen
\square Add objects: Three bowls with eight marbles in each bowl, take away nine marbles

CALSolutions

In this activity students use plastic cups, blocks, or other object that can be easily stacked.
\square They are given a specific amount of time (i.e. 1 minute, 30 seconds, etc.) to build a tower.
\square They then record the number of cups, blocks, or other objects used.
\square They do rounds where they do the building various times (trials) and copy down the data.
\square From the round data, they figure out the mean, median, mode, and range.
\square Let's see what this looks like...

Backward Building (story problems)

\square Add people: I have three bowls with eight marbles in each bowl. I take away nine marbles. How many marbles do I have left?
\square Change the people and the containers: Maria has three boxes of chocolates. Each box contains eight chocolates. She gives nine chocolates to her friends. How many chocolates does Maria have left?
\square See how many different ways learners can create stories for the equations.
\square Highlight the words that show operations.

Backward Building (story problems)

\square Practicing backwards helps learners think flexibly when moving from a story problem to an equation
\square Demonstrates the variety of language that can be used to show the same equation
\square Can be differentiated for learners at different grade levels
\square Easily adaptable to a flip grid activity
\square Can be done at home with everyday objects

Teddy Bear Hunt

Many communities are doing "teddy bear hunts"-check with your neighborhood Next Door apps or other community groups.
\square Ask students to create and analyze data charts depending on their grade levels.

- Tally marks, data tables, bar graphs, pie charts

Thank You
View this webinar and download the handouts on our CAL Online Learning Resource page. Join us for our next webinar, Friday, April 17th, 3-4pm EST - Kitchen Chemistry and Backyard Biology: Science and Language in the Home - https://attendee.gotowebinar.com/register/3648395491220675085 solutions@cal.org @CAL_Linguistics \#languageapplied

[^0]: A) $\frac{C \Delta L \text { Solution }}{\text { Prek } 12 \text { 2lu Ehacaic }}$

